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One of the ajor problems encountered in trying to formally verify the /orrectness of
computer ograms that use real arithmetic (hereinafter referred to as "mathematical
programs') is that the mathematical properties of real arithmetic operations in compu-
ters are much more complicated abd much harder to work with than the mathematical
properties of the corresponding ideal mathematical operations. This occurs because the
real number type implemented on a finite computer is not the same as the ideal, math-
ematical real number type. A finite machine can only represent finitely many dif-
ferent real numbers, whereas there are infinitely many ideal real numbers. The idea
behind the theory of asymptotic computing is to develop techniques to prove that the
accuracy of a mathematical program goes to infinity (e.g., larger and larger numbers
of representation bits for mantissas and exponents used in binary floating point
arithmetic). The theory of asymptotic computing, then, is essentially a general for-
malization of the notions of accuracyv and accuracy going tD (Continued on Reverse)
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infity .but without having to show howfast convergence happens (a major source
of d lfi-.Lty in numerical analysis). P
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Chapter 1

Introduction

This is the final report for the Reals project's Task 5. It follows Chapter
3 of the Task's interim report [ORA88] and describes different methods for
representing real numbers and performing operations on them in computers.
It summarizes and evaluates significant ideas from the technical literature on
computer arithmetic and interval analysis, relates results in interval analysis
to the Reals project's work on asymptotic correctness, presents empirical
results on naive and sophisticated interval algorithms and on VAX and IEEE-
standard floating-point arithmetic, and lists questions for future research.

The representation ideas from the literature include one we consider su-
perior to standard floating-point for command and control applications. The
questions for future research include new proposals for representing the real
numbers and an open theoretical question on representing the integers.

In our interim report, we classified error in computer calculations as ei-
ther input error, modeling error, truncation error or computational error. We
noted that different methods for representing real numbers and the elemen-
tary operations on them can only affect the computational error, which is
often insignificant compared to other parts of the total error. We also noted
that, in order to maintain reasonable computation speed and have stored
values occupy reasonably small areas in computer memory, a representation
system must discard information and hence introduce computational error.

We described interval analysis, a technique that maintains intervals whose
endpoints are conservative upper and lower bounds on all input and corn-



puted quantities, as a method for effectively eliminating error and replacing
it with uncertainty, uncertainty reflected in the lengths of the intervals input
or computed. Chapter 2 describes our subsequent work on interval analysis.

Chapter 2 gives empirical results on interval algorithms which show that
naive interval analysis is unlikely to be useful but that more sophisticated
interval algorithms can be surprisingly effective. The empirical results use a
version of interval arithmetic that takes advantage of characteristics of IEEE-
standard floating-point arithmetic [IEE85]. Chapter 2 briefly summarizes
the Reals project's notion of asymptotic correctness [ORA87], describes a
possible extension of this notion to interval arithmetic, and gives the results
of our efforts to relate interval asymptotic correctness to scalar asymptotic
correctness. Chapter 2 also describes a technique from Matijasevich [Mat85]
for dealing with a basic defect of interval arithmetic that causes it to be
overly conservative.

Our interim report noted that floating-point arithmetic has advantages
that should not be neglected when considering alternative representations,
and expressed the hope that using highly accurate floating-point arithmetic
would be a practical way to make the asymptotic model accurate. Chapter
3 describes our subsequent work on floating-point arithmetic.

Chapter 3 gives examples showing the strengths and weaknesses of the
asymptotic model, and discusses the costs and benefits of making it accurate.
Chapter 3 summarizes results from the technical literature on the time, space
and complexity costs of highly accurate floating-point arithmetic, particu-
larly floating-point arithmetic compatible with the IEEE standard. Chapter
3 also describes results from the literature on on-line versions of floating-point
arithmetic that facilitate doing parallel computation.

Our interim report reported that we would no longer pursue the Combina-
torial Representation, which used algebraic topology, originally investigated
by Task 5, but would instead study and evaluate other alternative represen-
tation systems for computer arithmetic given in the engineering literature.
Chapters 4 and 5 describe results from the literature.

Chapter 4 describes mathematical ideas used by the alternative represen-
tation systems considered iii Chapter 5. These ideas include approximate
rational arithmetic, mediant rounding, standard and generalized continued
fractions, and Gosper's algorithm for doing arithmetic on continued fractions.
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Chapter 5 summarizes and comments on the following proposed represen-
tation systems: The fixed-slash and floating-slash representations by Matula
and Kornerup [MK80,KM81,KM83a,MK85]; the binary-coded lexicographic
continued fraction representation by Matula and Kornerup [MK83,KM85,
KM87,KM88]; the hybrid fixed-slash and floating-point representation by
Hwang and Chang [HC78]; the variable-length-exponent representation by
Iri and Matsui [M181]; the repeating-mantissa floating-point representation
by Yoshida [Yos83]; the hyper-exponential representation by Olver and Clen-
shaw [O1v87]; and the finite p-adic representation by Gregory and Krishna-
murty [GK84].

The approximate rational arithmetic systems from Matula and Kornerup
show that our plan, given in our interim report, to only consider alternative
representation systems as means for specifying the endpoints of intervals,
was overly restrictive. Chapter 5's comments note for each representation
whether it is suitable for representing the endpoints of intervals and whether
it facilitates parallel computation. Chapter 5 also includes remarks about
the empirical evidence from Matula and Ferguson [FM85] supporting the
floating-slash representation system.

Our interim report described constructive-real representation systems
that make it possible to do calculations to a user-specified or data-determined
degree of accuracy. Our interim report noted that these systems could not
be used for typical real-time computation applications because they do not
discard enough information, but also noted that they might be useful for
calculations requiring unpredictable amounts of accuracy in intermediate re-
sults. The constructive-real systems described in our interim report included
a "lazily-evaluated continued fraction" system implemented by Jones [Jon84]
and a "real as the limit of rationals" system by Boehm [Boe87]. Chapter 6
describes our work with constructive-real representation systems.

Chapter 6 lists general properties of constructive-real representation sys-
tems, including what we learned about their suitability for real-time appli-
cations. It gives Caliban programs for computing standard and generalized
continued fraction expansions of rationals, and results on using Gosper's algo-
rithm to perform arithmetic on standard and generalized continued fractions.
It also gives additional information on Boehm's system of constructive-real
arithmetic.

3



Chapter 7 summarizes the conclusions of this report. It gives our own
suggestions for alternative representation systems and raises questions for
future research, particularly a question about the theoretical limits of repre-
sentations of the integers.

Finally, Chapter 8 ties up loose ends from Task 5. It notes plans or
further studies that we were unable to carry out, and corrects two errors in
our interim report.

if' i i l•m mmIi: " a



Chapter 2

Interval Analysis

This chapter summarizes our work on interval analysis. It first defines in-
terval analysis and terminology used later in the chapter, then reviews ele-
mentary relationships between interval and scalar arithmetic. It next gives
quantitative results comparing naive interval computations to scalar ones,
and contrasting the accuracy of naive and sophisticated interval algorithms.
The chapter then describes the results of our efforts to define a notion of
asymptotic correctness for interval algorithms and to relate proofs of interval
and scalar asymptotic correctness. Finally, the chapter describes a proposal
by Matijasevich [Mat85] for avoiding one of the major problems with interval
analysis.

2.1 Basic Definitions

Interval analysis maintains exact bounds on the absolute error in all data
values, and treats quantities as being known only to belong to intervals.
The operations of interval arithmetic act on intervals and produce intervals
that contain the results of the corresponding operations on all real numbers
contained in the original intervals.

We will refer to real numbers as scalar values, to operations on real num-
bers as scalar operations, and to programs that use a fixed number representa-
tion system's values and operations - e.g., IEEE-standard double-precision
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floating-point arithmetic -- instead of intervals and interval operations as
scalar programs. Let M be the set of values representable in the fixed repre-
sentation system. If the endpoints (possibly +oo or -o) of an interval are
in M, call the interval machine-representable.

Let a rounding be a function 0 : R U {+oo,-cc} --- M satisfying:

Vx E M (Ox = x)
Vx,y G R (x < y = . 0x < y)

Call a rounding 0 upwardly directed if Ox > x and downwardly directed
if Ox < x. Let T and I be upwardly and downwardly directed roundings,
respectively. Define a conservative rounding on intervals by

I A = I [ai,a 2 = [j a,, T a21.

For * E {-, -, ,/} and intervals A and B, if a * b is defined for every
a E A and b E B, define the interval operation A * B by letting

A*B = {a*bla E A,b C B),

and let A*B be undefined oterwise. Define the machine interval arithmetic
operations for * E {+, -,., on machine-representable intervals A and B
by letting

A*MB= (A*B)

whenever the resulting interval is defined, and letting it be undefined oth-
erwise. We will refer to programs using machine-representable intervals and
machine interval arithmetic operations, which we will usually refer to as in-
tervals and interval arithmetic, as interval programs.

Appendix A describes a form of interval arithmetic for intervals whose
endpoints are double-precision, IEEE-standard floating-point values. Ap-
pendix B gives an implementation of this interval arithmetic.

Aberth [Abe88] describes a version of interval arithmetic called range
arithmetic that represents an interval as a midpoint and a distance, called a
range, from this midpoint to the interval's endpoints. The operations of range
arithmetic produce interval bounds that are not quite as tight as the bounds
produced by conservative roundings to machine-representable endpoints, but
the operations of range arithmetic are simpler and faster.

6



2.2 Elementary Properties

The great advantage of interval analysis is that it recognizes and bounds
input, truncation and computational error, bounding every form of error ex-
cept modeling error. Interval results definitely contain the desired quantities,
and the lengths of the intervals clearly show the total uncertainty in these
quantities. The results of scalar programs, by contrast, are typically close
to the desired quantities, but not known to be higher, lower or exact, and
nothing shows how uncertain they really are. Interval analysis pays for this
great advantage with several disadvantages:

Interval arithmetic requires roughly twice as much calculation as scalar
arithmetic, though the cost of this can be greatly reduced by performing
many of the necessary calculations in parallel. The cost can also be reduced
by using range arithmetic.

Interval arithmetic requires computing, in hardware or software, appropri-
ate upward and downward rounding functions. IEEE-standard floating-point
hardware includes these rounding functions, but they complicate it and all
other representation systems that provide them. Range arithmetic, which
produces slightly looser bounds, does not require these functions; Aberth's
[Abe88] implementation of interval arithmetic runs on IBM machines where
IEEE-standard floating-point is not available.

There are also significant problems with interval arithmetic that cannot
be eliminated with more accurate representations of intervals' endpoints or
more accurate operations on these endpoints. Interval arithmetic does not
acknowledge, for instance, that input and computation errors are usually less
than their extreme values and often cancel out. This is the main reason that
input and calculation errors do not cause problems more often than they do.
If n uniformly-distributed random error variables are added together, which
corresponds to adding n intervals, the worst-case error is proportional to n,
but for large n the error variance is roughly proportional to V/n.

This defect is why our plan to consider alternative representation systems
only as means for representing the endpoints of intervals was overly restric-
tive. Some of the representation systems described in Chapter 5, particularly
the ones that use mediant rounding, are intended to exploit simplicity in
computed results so that accumulated errors frequently cancel out.
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Similarly, interval arithmetic does not reflect the relationships between
errors in different computed values, so its computed bounds on these errors
are often far too pessimistic. If a real number x is known only to lie in the
interval [-1,11, for example, interval multiplication would say of x2 only that
it lies in [-1, 1], when actually it must lie in [0, 1]. This problem cannot be
solved by looking at individual operations and their arguments: If two real
numbers x and y are both known only to lie in [-1, 1], for example, but
nothing is known about the relationship between x and y, then the product
x - y is correctly only known to lie in [-1, 1]. This is the problem addressed
by Matijasevich's ideas described in Section 2.5.

Operations other than the basic operations of interval arithmetic can
sometimes be used to make deductions about relationships between the errors
in different quantities. If a quantity is known to fall in two intervals, for
example, it is known to fall in their intersection. Such operations are included
in the interval arithmetic given in Appendix B and used in the Interval
Newton's Method program discussed in Subsection 2.3.2 below.

2.3 Quantitative Results

f his section describes quantitative results for a naive and a more sophisti-
cated interval algorithm. The naive interval algorithm, which is a simple
translation of a corresponding scalar algorithm, uses a Fast Fourier Trans-
form (FFT) to multiply large integers. The more sophisticated interval algo-
rithm uses an interval version of Newton's Method to find roots of polynomi-
als. Results for the naive algorithm include results for both IEEE and VAX
arithmetic; results for the more sophisticated algorithm use IEEE arithmetic
only.

The IEEE-based interval computations were carried out with the interval
arithmetic package given in Appendix B. All IEEE computations were car-
ried out in double-precision floating-point on a Sun 3/60 with an MC8881
floating-point coprocessor, mask A95N, under release 3.5 of the Sun UNIX
4.2 operating syste m.

The VAX-based interval computations were carried out with interval
arithmetic subroutines in the code given in Appendix C, Section 2. VAX

8



arithmetic [Dig8l] does not have directed roundings, but for each operation
produces a result that is either the representable value closest to the ex-
act answer or the representable result with larger absolute value of the two
equally-close representable values. VAX arithmetic is thus similar to IEEE
arithmetic [IEE85] in its default round-to-nearest rounding mode, except
that if there are two equally-near values VAX arithmetic takes the one with
larger absolute value, while IEEE arithmetic takes the one whose last bit is 0.
The VAX interval arithmetic subroutines compute absolute upper and lower
bounds for intervals by adding or subtracting the quantity represented by the
least significant bit in approximate upper and lower bounds computed with
VAX arithmetic. All VAX computations were carried out in double-precision
floating-point (D-floating) arithmetic on a VAX 11/750.

Every result is given in both ordinary scientific notation and in a "literal"
form that is a string of hexidecimal digits specifying the exact bit pattern
used to represent the result in whichever arithmetic system - either IEEE
or VAX - is currently being used. For the interpretations of these strings,
see [IEE85] for the IEEE values and [Dig8l] for the VAX ones.

2.3.1 FFT Multiplication Results

We implemented scalar and interval versions of programs, both for IEEE
and for VAX arithmetic, that use Fast Fourier Transforms (FFTs) to multiply
large integers. The algorithm we implemented is described in Knuth [Knu8l],
Section 4.3.3, Part C. The interval versions of these programs were obtained
by replacing floating-point values and operations by corresponding interval
ones.

High accuracy is actually not necessary for this application, since the ideal
final results are known to be integers and can thus be determined exactly
from floating-point approximations that are in error by less than 1/2. Since
the ideal final results are known to be integers, though, it is possible to
determine the error in the floating-point approximations easily, even though
these approximations are only produced after a reasonably large amount of
computation. Our programs were written to be run on integers that were
small enough to be multiplied with machine hardware, and to produce output
that was convenient for showing the errors in the floating-point results.

9



The interval version for IEEE arithmetic is given in Appendix C, Section
1, and uses the interval-arithmetic package given in Appendix B. The interval
version for VAX arithmetic in given in Appendix C, Section 2. The two scalar
versions of these programs were almost identical. The IEEE version is given
in Appendix C, Section 3, and the VAX version was created by making the
changes listed in comments in this code.

An edited version of the combined output from the four programs when
they were used to multiply three particular pairs of integers is given in Ap-
pendix D. The editing consisted of removing redundant descriptive informa-
tion and rearranging lines from the outputs to make it easier to compare
them.

These FFT multiplication results support our interim report's comment,
itself consistent with observations in the literature [SB80], that interval al-
gorithms obtained by simply replacing operations on real numbers with the
corresponding operations on intervals usually produce error bounds that are
much too pessimistic. Even for the IEEE results, which are correctly rounded,
the length of the interval calculated is sometimes over 2360 times the error
in the corresponding scalar quantity. In three IEEE results, the scalar quan-
tity is actually correct to all 52 of an IEEE double-precision value's bits of
precision, while the corresponding interval reflects uncertainty in as many as
17 of the final bits.

The VAX interval results do not really reflect undue conservatism in inter-
val bounds because the computed bounds are not optimal for the underlying
floating-point arithmetic. These results do show, however, that the greater
accuracy in VAX double-precision over IEEE double-precision arithmetic can
produce more accurate results even without optimal rounding. This is dis-
cussed in Chapter 3.

2.3.2 Interval Newton's Method Results

We also implemented a more sophisticated interval algorithm, the Interval
Newton's Method algorithm from Alefeld and Herzberger [Ale86]. The code
for this algorithm is given in Appendix E, and uses the TEEE interval arith-
metic package given in Appendix B.

10



This algorithm is based on the following observations. Define the length
and midpoint functions on an interval A = [ao, a,] by

length(A) = a - a0  and
mid(A) = (ao +a,)/2.

Suppose f is a continuous function, and suppose the intervals X (°) = [xo, x1]
and M = [mo, m) are such that f(xo) < 0, f(xj) > 0, and f has a root in
X ° such that for all x E X (°) - 10}

0 < mo < AX) - f(0)_ f(X) < m, <oo.X -_ - -

Define intervals X(k+1) for all k > 0 inductively by

X(k+l) = (mid(X(k)) f(mid(X(k)))) n X (k).

M
In operations combining a real number and an interval, interpret the real
number as a point interval. Then for all k > 0,

E X (k),

X (°) D X( ) D ... X(k), and

length(X( k+l)) < -(1 - -) length(X(k)), so

lim X(k) -

k-oo

The code in Appendix E acknowledges that the midpoint of an inter-
val can usually only be computed approximately, but in evaluating f at an
imprecisely-known midpoint it assumes that the possible range of values is
contained in the interval determined by evaluating f, with rounding modes
set appropriately, at the endpoints of the interval containing the midpoint.
This assumption is reasonable, since the interval containing the midpoint will
either be a point interval or have two consecutive representable values as its
endpoints.

Samples of the output from this code are given in Appendix F. All of these
results for the Interval Newton's Method are not only highly accurate, but
perfect. As the results of Boehm's [Boe87] arbitrary-precision calculator and
the "literal" results show, the intervals computed are the shortest possible
machine-representable intervals containing the desired quantities.

11



2.3.3 Summary

These results show that a simple-minded application of interval analysis is
unlikely to be useful, but that nontrivial interval algorithms can be surpris-
ingly powerful and are worthy of further investigation. We did not expect
the simple-minded interval algorithms, particularly those using the control
of rounding available in IEEE arithmetic, to perform so poorly, and we did
not expect the Interval Newton's Method algorithm to perform so well. This
conclusion about the usefulness of simple-minded interval analysis is also
supported by our experience, described in the next section, with trying to
relate scalar and interval versions of asymptotic correctness.

2.4 Interval Asymptotic Correctness

We initially conjectured, since the results of interval calculations definitely
co:,tain desired exact values while the results of scalar ones are merely usually
, los-c to these exact values, that if a program could be proved asymptotically
co; rect when the values of its variables and operations were reinterpreted
as intcrvals and interval operations then the program would not only be
a:symptotically correct but effectively asymptotically correct - i.e., it would
be theoretically possible to compute the degree of machine accuracy necessary
to have the program produce a desired degree of output accuracy.

In an attempt to prove this conjecture, we began developing a generaliza-
tion of the Reals project's asymptotic semantics [ORA87] that would allow
Ihe value, of variables to be either nonstandard real numbers or intervals
of nonstandard real numbers, and allow the arithmetic operations on these
variables to denote either operations on nonstandard reals or on intervals of
nonstandard reals. During this effort, however, we found a counterexample
to the intent of our conjecture.

This section first gives an informal definition of the notion of asymptotic
correctness and an informal description of the interval version of it we investi-
gated. It then gives and explains the example we found showing that merely
reinterpreting scalar programs as interval ones and proving them intervally
asymptotically correct does not give useful information about the degree of
machine accuracy necessary to obtain a desired degree of output accuracy.
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2.4.1 Asymptotic Correctness Definitions

Asymptotic correctness can be loosely defined in standard mathematical
terms as follows: A program is asymptotically correct if it always halts and
its outputs become arbitrarily accurate as it is run on a sequence of ma-
chines whose sets of machine-representable numbers become progressively
larger and whose machine arithmetic operations become progressively more
accurate and progressively less vulnerable to overflow. On such a sequence of
machines, arbitrary real-number inputs can thus eventually be approximated
arbitrarily accurately, and arbitrary real-number calculations can eventually
be carried out arbitrarily accurately and without exceptions[ORA87].

For the practical purpose of proving programs asymptotically correct,
though, it is more convenient to define asymptotic correctness in terms
of nonstandard models of analysis. With this definition, it is possible to
formally prove programs asymptotically correct from axioms that are only
slightly more complicated than typical axioms for the reals numbers and
their usual operations and relations. The Reals project [ORA87] developed
this approach as a means'of eliminating the most common bugs in numerical
software.

A nonstandard model of analysis is very similar to the real numbers with
their usual arithmetic operations and equality and order relations, but it con-
tains infinitesimal numbers other than 0 which are smaller in magnitude than
any nonzero real number, and infinite numbers which are larger in magnitude
than any real number. The real numbers, or standard reals, with their usual
arithmetic operations and relations occur as a substructure of every nonstan-
dard model of analysis. A nonstandard real is called finite if it is bounded by
some standard real. Two nonstandard reals are infinitesimally close if their
difference is an infinitesimal. See introductory textbooks on nonstandard
analysis, e.g., Hurd [HL85], for more information about nonstandard models
of analysis.

In the nonstandard model of analysis formulation of asymptotic correct-
ness, every standard real is assumed to be infinitesimally close to a machine-
representable value, every machine arithmetic operation on arguments that
are finite, except division by an infinitesimal, is assumed to produce a result
infinitesimally close to the result of the corresponding ideal operation, and
overflow is assumed to never occur for any operation whose result is finite.
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The number of different states a program can assume is also assumed to be
bounded by a nonstandard integer, though this nonstandard integer can be
infinite. A program is then asymptotically correct if always halts after a non-
standard integer number of steps and its results are then infinitesimally close
to ideal values for the function or relation the program is specified to com-
pute. A program is asymptotically correct by the standard definition if and
only if it is asymptotically correct by the nonstandard definition [ORA87].

For a nonstandard analysis formulation of interval asymptotic correct-
ness, assume that every standard real is contained in an interval of infinitesi-
mal length with machine-representable endpoints, assume that every interval
operation on intervals with finite endpoints, except division by an interval
containing an infinitesimal, produces an interval whose endpoints differ only
infinitesimally from the endpoints of the interval produced by the correspond-
ing ideal interval operation, and assume that overflow never occurs on any
interval operation that produces an interval whose endpoints are finite. A
program is then intervally asymptotically correct if it halts after a nonstan-
dard integer number of steps and its results are then intervals of infinitesimal
length containing ideal values for the function or relation the program is spec-
ified to compute.

2.4.2 Conjecture Problem Example

The program given in Appendix G gives an example of the problem we found
with relating the original scalar version of asymptotic correctness to the in-
terval version just defined. This program computes 7r with a power series. Its
variables high and low contain computed approximations to initial segments
of the power series. If they were computed exactly, high and low would
be definitely greater than and definitely less than 7r, respectively, the value
of high would decrease monotonically, and the value of low would increase
monotonically. Fhe program runs until low is at least as large as high, or
the newly-computed value of high is not strictly less than high's previous
value, or the newly-computed value of low is not strictly greater than low's
previous value.

With a formalization of IEEE arithmetic in a nonstandard model of anal-
ysis, this program is provably asymptotically correct. Such a proof shows
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that, after a nonstandard (infinite) integer number of steps, either one of the
variables m, pow5 or pow239 overflows to +o, or the accumulated errors in
computation cause low to equal or exceed high. In all cases, since division
by +oo gives 0 as its result and causes values of high and low to be equal or
unchanged, the program's loop termination condition is met and the program
halts with both high and low infinitesimally close to 7r.

Note that the possibilities that arise in the nonstandard proof of asymp-
totic correctness reflect possibilities on real machines. On most machines
with IEEE arithmetic, for example, the variable pow239 will overflow to +o
before the loop terminates, and that will cause computed values for high and
low to be equal. On machines without IEEE arithmetic, the program has to
be rewritten so that the loop terminates if either its termination condition is
met or if overflow occurs.

If the program were reinterpreted to make the values of the variables inter-
vals of nonstandard real numbers, and to make machine arithmetic operations
the corresponding machine operations on these intervals, the program would
terminate when the computed intervals for high and low intersected, when
a newly-computed interval for high intersected the previously-computed in-
terval for high, or when a newly-computed interval for low intersected the
previously-computed interval for low. With the interval interpretation, the
program could be proved to terminate after going through its loop a nonstan-
dard (infinite) integer number of times, with both of the intervals assigned to
the variables high and low being of infinitesimal length and both containing
points infinitesimally close to 7r.

The critical problem with the proof of interval asymptotic correctness
would be that it would not determine which, if either, of the two intervals
assigned to the variables high and low actually contains 7r. If the program
terminated because one or both of the computed intervals for high and low
stopped strictly increasing or decreasing, then these two intervals might be
separated by an infinitesimally long gap containing 7r. For the definition of
"interval asymptotic correctness" given above, this interval version of the
program would not be asymptotically correct.

There are, of course, programs to compute intervals containing ir that
could, in the asymptotic case, be proved to compute intervals of infinitesimal
length containing 7r. It is also true that the program given in Appendix G is
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effectively asymptotically correct. The example shows, though, that a corre-
spondence between effective asymptotic correctness and interval asymptotic
correctness cannot be given, as we had hoped, by a simple reinterpretation of
values and operations. Programs that are intervally asymptotically correct
are likely to contain interval operations such as union and intersection that
do not correspond to any scalar operations.

2.5 Matijasevich's Method

Y. Matijasevich [Mat85] has suggested a method for calculating rigorous
bounds on the uncertainties in computed outputs that arise from uncertain-
ties in inputs and approximate calculations. This method, which is essentially
an efficient way of computing numerical bounds on partial derivatives, ad-
dresses the problem that there are correlations between the errors in different
computed quantities that make the bounds given by interval arithmetic far
too conservative. His method has serious limitations, but is worthy of further
study.

To obtain Matijasevich's idea in its simplest form, first assume that the
program P0 takes m values x0,..., xm _ as inputs, computes distinct values
X.,... , I as intermediate results, computes these intermediate results in
straight-line code that uses only binary arithmetical operations, and returns
y = X,_1 as its final result. Assume that all programs are written in a C-
like language, so = denotes assignment, += denotes incrementing the quantity
on the left by the quantity on the right, and -= denotes decrementing the
quantity on the left by the quantity on the right. To define notation, assume
the lines of Po computing intermediate results are of the form

Xi= X9() *i Xh(i);

for m < i < n, where e {+, -, ,/}. The functions g and h identify the left
and right arguments, respectively, of the operations giving the intermediate
results. For the moment, assume that all machine operations are exact, and
ignore program constants.

Matijasevich points out that ordinary interval arithmetic is equivalent
to replacing Po with a new program P that takes not only the m values
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XO,..., m-i, but also m error-bound values eo,...,emrl, as inputs, and com-
putes for each m < i < n an error bound ej such that xi varies by no more
than ei from its computed value if every xj, 0 < j < m varies by no more
than e3 from its input value. The program P1 can be obtained from P0 by
inserting code to compute the necessary error bound before each line com-
puting one of the intermediate results. If *j E {+, -}, for example, the code
inserted is

ei = e9 (i) + eh(i);

if *i = the code inserted is

ej =  e,(i) ' IXh(i) I + eh(i) ' X (j) I + eh() • eg(i);

and if *i / the code inserted is

if(IXh(i)I < eh(i))
e= + o0;

else
ei =  iz( ie(

(This presentation is slightly simpler than Matijasevich's and assumes the
presence of the IEEE-arithmetic value +oo.)

Matijasevich next gives an efficient method for calculating the partial
derivatives oy/axj for 0 < J < m at the point (x0,...,xm -) and bounding
them as each of the xj varies by no more than e.. To calculate the partial
derivatives and bound them, form the program P2 as follows: First append
to P, the lines

Zo = 0;

do = 0;

d_ 2 = 0;

zn-1 = 1;

d,_ 1 = 0;
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Then as i varies from n - 1 downward to 0, if *j = + append the lines,

zg(i) += zi;

d9() += di;

Zh(i) += zi;

dh(i) += di;

if *j = - append the lines
zg(i) += zi;

dg(i) += dil

Zh(i) -= zi;

Zh(i) += di;

if * • append the lines
Zg(i) += Zi Xh(i) ;

dg (i) += Izi eh(i) + di .Xh(i) + di • e "

Zh(i) += Zi ' ,gki) ;

dh(i) += Izij • eg(i) 4 di - xg(i + di " (0;

and if *j = / append the lines

Zg(i) += ZilXh(i);

d(,) -di + Iztxh(i I) eh(i)
IXh(i)I - eh(i)

2z,() -= zi * xg(i)/Xh(i;

Iz i- e.9() + di Ixg(j)l + di • eg() + IzIl'l~.l'(2"IzhI)l'eh()+eh())
dh(i) += ii)

The computed value of zi can be roughly described as Oy/O9x evaluated
at the point (xo,. ., x,-_) for y expressed in terms of the x's that have been
considered so far. When program P2 terminates, zj = Oy/Oxj evaluated at
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(xO,...,x-,,,) for all 0 j < m. To name the region of points "near" the
point (x0 ,. m...I x,), let

B = [xo - eo,xo + eol x... x [xm-i - em-1-1 x + e._,].

The values di are such that if Oy/axi is evaluated at different points in B,
the value of ay/axi never differs from zi by more than di. It is then true that
for every point (xI,..., , e B,

M-1 M-1

_(-Izj - dj) . e< : y(x.,... x' ) - y(xo,. .. xm_,) :5 (IzI +d) e.
j=O j=O

Further, the error bound

7n-1

j-O

is optimal in the sense that ratio of the largest difference between the value
of y at (x0,... ,X.-.I) and at another point in B to e tends to 1 as all of
the ej tend to 0. The technique thus eliminates the excess conservatism in
ordinary interval arithmetic.

To deal with error in machine operations, use directed roundings to com-
pute conservative upper bounds in all the calculations of the e, and di, and
use interval arithmetic in all the computations of the xi and zi. Constants in
programs can be treated as additional inputs; a constant xi that is machine-
representable can be dealt with more simply than the true inputs because ej,
di and zi are all 0.

Matijasevich's technique requires a significant amount of additional com-
putation, but this amouLu is only proportional to the length of the original
program. The final program P2 is only a constant multiple longer than the
initial program Po. By contrast, computing the partial derivatives 9x 1 a/Oxj
at (Xo,...,XM-) for each i and every 0 < j < m, as was suggested by
Hansen [Han75], takes time proportional to the original program's length
times m. Computing the partial derivatives by working backwards, by look-
ing at successive decreasing values of i, produces the necessary results much
faster; that is why Matijasevich called his technique a "posteriori" version of
interval analysis.
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The most significant problem with Matijasevich's technique is that it is
difficult to apply it to programs with loops. If a program ran on a machine
that stored all its intermediate results and also stored a record of which
operations it performed, one could carry out his technique to produce a new
program computing the final error bound e as before, but the space needed to
store this new program would no longer be a constant multiple of the space
needed to store the original program.

Matijasevich claims that for some mathematical problems, particularly
calculating determinants by putting matrices into triangular form, programs
exist that compute the error bound e by a similar technique that require
storage space on the order of that required by the original program. He does
not give references, though, and suggests that even when such programs exist
they cannot be produced by a mechanical transformation. His technique is
worthy of further attention because a mechanizable means might be found for
taking advantage of posteriori calculation of partial derivatives and bounds
on these derivatives.
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Chapter 3

Floating-Point Arithmetic

We noted in our interim report [ORA881 that one of the "alternatives" to
floating-point arithmetic that should be considered was floating-point itself.
We suggested that sufficiently precise versions of floating-point arithmetic,
preferably ones meeting the IEEE standard, might suffice to make the asymp-
totic model realistic. We expected that such versions would have the single
serious drawback that their operations would be slower, and expected that
they could be implemented so that this slowing would be minimal.

We promised to investigate the costs and benefits of different versions of
floating-point arithmetic, to perform a specific implementation to compare
IEEE and VAX arithmetic, to investigate the theoretical speed limits of IEEE
and other forms of floating-point arithmetic, and to look into whether alter-
nate forms of floating-point arithmetic might facilitate parallel computation.
This chapter comments on the realism of the asymptotic model, discusses
the costs of precision in floating-point arithmetic, and gives empirical re-
sults comparing IEEE and VAX arithmetic. It also describes a version of
floating-point arithmetic that facilitates parallel computation.

3.1 Realism of the Asymptotic Model

We have informally defined the notion of asymptotic correctness [ORA87]
and its formulation in nonstandard models of analysis [HL85] in Section 2.4.
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We take the asymptotic model of computation to be the one that assumes
valid machine operations on finite quantities produce results that differ only
infinitesimally from their ideal values. Although the Reals project developed
the asymptotic model as an idealization that could be used to eliminate most
bugs in numerical software, it is obviously a formalization of an "extremely
precise" form of floating-point arithmetic, and is at least partly realistic for
every accurate implementation of floating-point arithmetic.

As we noted in our interim report, a version of floating-point arithmetic
with 256-bit mantissas and correctly rounded operations would be unlikely
to accumulate computational errors large enough to be significant parts of
measurable quantities in any calculation that could be carried out in a real-
istic time. In such a floating-point arithmetic, the computational errors do
behave like the infinitesimals in nonstandard models of analysis. We set out
to determine how much smaller the mantissas could be to give floating-point
values that would still have this property.

We found, however, that there are situations in which no reasonable
amount of precision in floating-point arithmetic suffices to make the asymp-
totic model accurate. The fragment of C code

x = 2.0;
for(i=0; i < 10000; ++i)

x = sqrt(x);
for(i-0; i < 10000; ++i)

X 
= 
X*X;

y =x;

for example, assigns y a value infinitesimally close to 2.0 in the asymptotic
model, but on an accurate computer with fewer than thousands of bits in
its floating-point values assigns y the value 1.0. Still, such examples are
extremely unrealistic, so sufficiently precise floating-point values can be ex-
pected to make the asymptotic model realistic for most code.

The extended-precision values in the IEEE standard were chosen to have
a range so large that "over/underflows, which mostly occur during interme-
diate calculations, would almost disappear", and to be precise enough that
"for many calculations, rounding errors [are] really negligible" [KP791. Ordi-
nary double-precision values are also often considered to have this precision
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property [Knu81]. This can be construed as saying that IEEE extended-
precision values, or even ordinary double-precision values, are thought of as
making the asymptotic model sufficiently accurate for most applications; the
asymptotic model gives a precise interpretation of "really negligible".

3.2 Costs of Accuracy

Although we emphasized time as the critical cost in our interim report, the
time needed to perform operations is not necessarily the most significant cost
of using more precise floating-point values. The space needed to store these
values was considered so expensive by those choosing the IEEE standard
that extended-precision values were intended to be used only as intermediate
values [KP79].

More importantly, even if fast algorithms theoretically exist for perform-
ing operations on larger floating-point numbers with little loss of speed (e.g.,
algorithms using Wallace [Wal64] or Dadda [Dad65] trees that perform mul-
tiplications in times proportional to the logarithm of the number of bits),
the size of the necessary integrated circuits can be prohibitive. "Silicon real
estate" is very expensive, so much of the literature on hardware design eval-
uates area/time tradeoffs [BPTP87,Fan87,HC87,PSG87,Sha87].

Further, fast algorithms can require more complicated integrated circuits
that are more difficult to manufacture and have a lower yield of nondefective
circuits than do slower algorithms. Simplicity is enough of an advantage in in-
tegrated circuit manufacture that there is engineering interest in theoretically
slower algorithms with simpler hardware implementations (PSG87,Sha87].

Finally, although there are fast algorithms for addition, subtraction and
multiplication that can be modified to produce correctly-rounded results con-
sistently with the IEEE standard, the fastest algorithm ordinarily suggested
for division, an iterative one [Knu8l], does not produce correctly-rounded re-
sults and so cannot be modified to fit the IEEE standard (see e.g., [Fan87]).

The iterative division algorithm takes time that is proportional to log n,
where n is the number of bits in the mantissas of the numbers being divided.
Although we did not locate proofs that division algorithms compatible with
the IEEE standard which require only time proportional to log n do not
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exist, that is suggested by the engineering literature, which contains descrip-
tions of slower "fast" division algorithms compatible with the IEEE standard
[BPTP87,Fan87,PSG87]. These algorithms are similar to ordinary long divi-
sion but use redundant digit-sets (described briefly in Section 3.4 below) and
nonrestoring division to simplify the multiplication of the divisor by the next
digit in the result and to avoid having to "undo" a subtraction if the "guess"
as to the next digit was too high [Atk68]. While these algorithms are much
faster than other division algorithms, they still require time proportional to
n.

The issue of whether the IEEE standard forces division algorithms to take
times greater than constant multiples of the time required by the iterative
algorithm did not arise in debates over adoption of this standard; see [Cod79,
Fel79,FW79,KP79,PS79j and [Cod81,Coo81,Dem81,Hou81,TP81J. For prac-
tical purposes, large numbers of bits are not considered for operations that
are to be implemented in hardware, particularly hardware constructed in
accordance with the IEEE standard.

3.3 IEEE and VAX Arithmetic

We carried out the implementation of scalar and interval versions, for IEEE
and VAX arithmetic, of programs to compute products with Fast Fourier
Transforms. The code for these programs is in Appendices B and C, and an
edited version of their output is in Appendix D. These programs and their
output were described in Section 2.3. This section describes characteristics
of their output that are significant for comparing IEEE and VAX arithmetic.

Comparing IEEE arithmetic and VAX arithmetic is essentially a matter
of comparing more logical rounding with greater precision. In comparing
roundings, the results of both IEEE and VAX arithmetic, for IEEE arithmetic
in its default round-to-nearest mode, are typically produced as if these results
were first computed exactly, then rounded to the nearest representable value.
If an exact result is equally near two representable values, though, VAX
arithmetic rounds it to the one with larger magnitude while IEEE arithmetic
rounds it to the one whose least significant bit is 0. Rounding errors are thus
more likely to accumulate in VAX than in IEEE arithmetic.
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In comparing precisions, both VAX and IEEE double-precision floating-
point values occupy 64 bits. On the VAX [Dig8l], 55 of these bits code the
mantissa and 8 of them code the exponent; in IEEE arithmetic [IEE85], 52
bits code the significand and 11 code the exponent. (The IEEE standard
uses "significand" instead of "mantissa" because "significands" are defined
for things such as infinite and "Not a Number" values for which "mantis-
sas" are not defined.) In both VAX and IEEE double-precision values, the
mantissa/significand is always normalized and its leading 1 is not explic-
itly recorded, so the two versions actually have 56 and 53 bits of precision,
respectively. IEEE arithmetic thus sacrifices precision for moderately-sized
numbers in order to handle numbers of more varying magnitudes.

The interval results show that even with a much cruder algorithm for
determining interval endpoints the VAX results were better than the IEEE
results in all except one case in which the IEEE result was not a point
interval. (The VAX endpoint algorithm was too crude to give VAX arithmetic
a chance to produce point intervals.) Ths scalar results were more evenly
matched; in three of the eight cases in which both results were not perfect,
the IEEE results were better. These results indicate that having control of
rounding modes is not in itself worth three additional bits of precision, but
that avoiding rounding errors that tend to accumulate is almost worth those
three bits.

3.4 Floating-Point and Parallel Processing

We did find information in the engineering literature on alternative represen-
tations of floating-point values that facilitate performing many different oper-
ations in parallel. The basic idea, which is also used in the lexicographically-
coded continued fraction version of finite rational arithmetic to be described
in Section 5.2, is of doing on-line arithmetic.

In on-line arithmetic, each argument to an operation is represented as a
sequence of generalized digits that could be bits, ordinary digits, negative
digits, or so forth. The algorithm performing the operation inputs successive
digits from its inputs and produces a sequence of similar successive digits as
its output.
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Some definitions of on-line arithmetic (e.g., [TE77]) also impose the ad-
ditional restrictions that the values are represented so that their most signif-
icant digits occur first and that each operation produces the jth digit of its
output after taking in at most j +8 digits of its inputs, where 6 is a positive
integer called the operation's delay. With the more restricted definition, on-
line operations can perform variable-precision arithmetic and produce more
or fewer result digits as desired; there is no problem of having a potentially
infinite wait for the next digit.

With on-line arithmetic, performing many computations in parallel is
simple, and no potentially-intractable problems with making sure the results
of one computation are available before they need to be used in another one
need to be solved. The expression

z = co + x (cI + x. (C2 + x C3)),

can be evaluated as

z = So(Co,Po(X,S,(cI,P(X,S 2 (c2, P2(x,c3 )))))),

where So, S, and S2 denote circuits producing sums and Po, P and P2 denote
circuits producing products. The digits of x can be duplicated and sent to
P0 , P and P2 simultaneously. As soon as P2 begins to produce result digits,
S2 can begin combining them with digits from c2 while P2 continues taking
in digits from x and c3. As soon as S 2 begins producing result digits P can
start operating while S2 and P2 continue operating, and as soon as P begins
producing result digits S can begin operating while PI, S 2 and P2 continue
operating. Eventually, parts of all the necessary operations can be being
performed simultaneously. The more complicated evaluating an expression
becomes, the greater is the possibility for performing many operations in
parallel.

Ercegovac and Watanuki [WE811 have developed an on-line version, using
the more restricted definition of "on-line", of floating-point arithmetic. Their
version of floating-point uses a maximally redundant set of digits to code the
mantissas. For numbers to a base b, the maximally redundant set of digits is

{-(b - 1)..-1, 0, 1.,(b - 1)).

As notation for negative digits, let the negative of an ordinary digit be given
by putting a bar over the digit, so 3 = -3, 9 = -9, and so on. The nonzero
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numbers with redundant digit-sets are otherwise interpreted as if they were
ordinary base-b floating-point numbers whose mantissas have magnitudes
between 0 and 1. For b = 10, for example, the value with mantissa 125 and
exponent 2 denotes the number 1 1 10 + (-2) - 1 + 5- 0.1 = 8.5.

Ercegovac and Watanuki's system treats the exponent of a floating-point
value as a single digit, and each operation determines the exponent and first
digit of its result after reading the exponents and first digits of its arguments.
Their on-line floating-point arithmetic operations are then essentially given
by corresponding on-line arithmetic operations for the mantissas. Addition
and subtraction are easy - we will briefly describe base-10 addition to show
how the redundant digit set is used - and multiplication and division algo-
rithms are given in [TE77].

To add, take the exponent of the result to be the larger of the exponents
of the arguments, and shift the mantissa of the argument with the smaller
exponent to the right, filling in a leading 0 and incrementing that argument's
exponent with each shift, until the exponents are equal. Next output the
successive digits of the result's mantissa such that:

1. The first j (or j + 1 if there is an initial carry) digits of the result's
mantissa equal the sum of the first j digits of the properly-aligned
arguments' mantissas; and

2. The last (the jth or j + 1st) digit of the result's mantissa is not 9 or 9.

The condition about the last digit can be achieved since 9 = 1i and 9 = 1,
and any carry cannot affect more than the next-to-last digit - by induction
the next-to-last digit was not 9 or §. It is thus possible to add the mantissas
with a delay of at most 1.

Redundant digit sets essentially get their power because it is not necessary
to determine each successive result digit exactly. It is sufficient to output a
result digit that is close to the value it would have in a nonredundant system,
then correct it later if necessary. In ordinary base-10, for example, the third
digit of a number whose partial computation begins 0.32999... is uncertain,
but in redundant base-10 it can be taken to be 3; if the number turns out to
be smaller, say 0.329998, express it as 0.330002.
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Chapter 4

Mathematics for Alternatives

This chapter describes approximate rational arithmetic, mediant rounding,
standard and generali-' ontinued fractions and Gosper's algorithm. These
concepts are used in sc ,eral of the alternative representation systems from
the literature that -re described in Chapter 5, particularly the fixed-slash,
floating-slash i ad lexicographic continued fraction (LCF) representations by
Matula and Kornerup [MK80,KM81,MK83,KM83a,MK85,KM85,KM88].

4.1 Approximate Rational Arithmetic

Our interim report bORA88) only discussed rational arithmetic as a means for
doing exact computation. It only considered rationals given as pairs of lists
specifying arbitrarily-large integers, or as scaled versions of such rationals
multiplied by powers of a fixed base. We argued that the inability of such
representations to naturally discard information, with the loss of speed and
excess use of memory that this implies, makes rational arithmetic impractical
for typical applications.

There are alternatives, though, of approximate rational arithmetic. These
define approximate arithmetic operations on finite sets of rationals, rationals
that can each be stored in a fixed number of bits. In these arithmetics, the
results of an operation are the rationals that would be obtained by applying
a fixed rounding, as in Section 2.1, to the operation's ideal results, rounding
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them to representable values. These arithmetics avoid, to differing degrees,
the problem of a steadily-growing use of time and space that is implied by
exact rational arithmetic, but still allow many rationals to be represented
exactly and many operations on rationals to be performed exactly.

With this very general definition, some versions of floating-point arith-
metic, particularly the VAX and IEEE ones, are approximate rational arith-
metics; floating-point values are rationals, and these arithmetics effectively
obtain their results by applying fixed rounding functions. All versions of
what are normally called approximate rational arithmetics, though, includ-
ing all those proposed by Matula and Kornerup, differ from floating-point
in exactly representing large numbers of simple rationals, e.g., 1/3. Further,
in all these arithmetics -x and 11x are representable whenever x is; 1/0 is
representable and is taken as +oo.

In typical floating-point calculations, even input floating-point values are
thought of as approximations to ideal real numbers that are usually irra-
tional. We will call the numbers arising in a calculation rational if the ideal
inputs, exact intermediate results, and exact outputs of the calculation are
rational, and call these numbers irrational otherwise. The general hope be-
hind approximate rational arithmetics is that representable rationals will oc-
cur frequently in calculations, so that the approximate arithmetics will often
capture the advantages of exact rational arithmetic while still maintaining
adequate precision in other cases.

All versions of approximate rational arithmetic provide means for dis-
carding information, particularly in the process of replacing exact results
by their representable approximations. The different approximate rational
arithmetics vary in which rationals are representable, which rounding im-
plicitly computes representable approximations, and which exceptions, error
indications and error values are returned in exceptional cases. Choosing
among such systems requires making trade-offs between the systems' time
and space requirements, the range of the numbers they represent, and the
utility of any additional information they provide.

Call a fraction p/q simpler than a fraction p'/q' if p < p', q < q', and at
least one of these inequalities is strict. Let a simple chain be a finite set of
irreducible fractions, ordered by the usual order on the real numbers, with
the property that all irreducible fractions simpler than some member of the
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chain are also in the chain. Every simple chain contains the rationals 0/1
and 1/0, which represent 0 and +oo respectively; call a simple chain triv-
ial if it contains only these rationals. In each of the approximate rational
arithmetics considered in Chapter 5, 0 is representable, the negative of ev-
ery representable value is representable, and the nonnegative representable
rationals form a simple chain.

As an example, the set

0{, 1 1 2 ,1 3 2 3 1}

1'3 2 3 1'2' 1' 1'0

is a simple chain, but would not be if 3/1 were removed; 3/1 is simpler than
3/2, and 3/2 is in the set. As the example indicates, the members of a
nontrivial simple chain are not evenly spaced.

The different arithmetics proposed by Matula and Kornerup listed above
all use a process, described in the next section, called mediant rounding to
round unrepresentable reals to representable ones. The approximate arith-
metic by Hwang and Chang [HC78], and the one by Yoshida [Yos83], do not;
they use roundings similar to the roundings for VAX arithmetic and for IEEE
arithmetic in its default, round-to-nearest mode.

Mediant rounding quite often does not round unrepresentable reals to
the nearest representable ones. This rounding, based on the theory of best
rational approximations, is biased in favor of simplicity, so it is more likely
to give simple rationals than complicated ones as results.

With mediant rounding, errors in intermediate results often cancel out
completely in computations on rational numbers. Errors in computations
whose ideal inputs are irrational, though, tend to be larger with mediant
rounding than they would be with round-to-nearest rounding. Empirical
results to these effects are described in Subsection 5.1.4.

The uneven spacing of members of simple chains, and the fact that medi-
ant rounding leads errors to cancel out, both have as a consequence that our
interim-report [ORA88] intention to view alternative representation systems
only as means for representing the endpoints of intervals was too restrictive.
None of the fixed-slash, floating-slash or LCF representations are appropri-
ate for representing the endpoints of intervals because the degree of conser-
vatism introduced by bounding reals with representable values varies greatly
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measures on this variability are given in Subsections 5.1.3 and 5.2.2. The
characteristic of mediant rounding that it tends to make errors cancel out
gives these representations a significant advantage over other representations,
though, an advantage contrasting with one of interval arithmetic's greatest
weaknesses - c.f., Section 2.3.

Still, the importance of mediant rounding's ability to make errors cancel
out should not be exaggerated. Errors tend to largely cancel out even without
roundings biased in favor of the correct results. Note in Appendix D that,
even when the IEEE interval results indicate some uncertainty, three of the
eight scalar FFT-multiply results for IEEE arithmetic, and one of the eight
for VAX arithmetic, are exactly correct.

4.2 Mediant Rounding

This section defines mediant rounding and gives some of its properties. The
following definitions and results are classic pieces of number theory [HW60];
proofs of the results are repeated in [MK80].

Let the letters p, q, and their primed variants all denote nonnegative
integers. Call two fractions p/q and p'/q' adjacent if Jp/q - p'/q'I = 1/qq',
or equivalently if Jpq' - p'q = 1. Note that adjacent fractions must be
irreducible, and that except for the pair (0/1,1/0) one of the two must be
simpler than the other.

Let the mediant of p/q and p'/q' be (p + p')/(q + q'). If p/q and p'/q' are
adjacent and p/q < p'/q', then the following are all true:

1. p/q < (p + p')/(q + q') < p'/q';

2. p/q and p'/q' are both simpler than (p + p')/(q + q'); and

3. (p + p')/(q + q') is the simplest rational strictly between p/q and p'/q'.

Further, consecutive members of any simple chain are adjacent. (No, this is
not obvious, and neither is the third of the facts just listed.)

From these facts it follows that if p/q and p'/q' are consecutive members
of any nontrivial simple chain and p/q < p'/q', then
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1. p'lq' - p/q = lqq';

2. (p + p')/(q + q') is not as simple as either of p/q and p'/q', and does
not belong to the simple chain; and

3. (p + p')/(q + q') is farther from the simpler of p/q and p'/q'.

If R, a set of representable rationals, consists of the members of a simple
chain and their negations, define the mediant rounding function $tR from
arbitrary reals to members of R as follows [MK80]: Let x be a real number.
If x E R, let DR(X) = x. If x < 0 let 4DR(X) = -DOR(-x). If x is positive and
not in R, there exist two consecutive fractions p/q and p'/q' in R such that
p/q < x < p'/q'. In this case, let m = (p + p')/(q + q') be the mediant of p/q
and p'/q', then let 4IR(x) = p/q if x < m, let DR(x) = p'/q' if x > m, and let

IR(x) be the simpler of p/q and p'/q' if x = m.

Since the mediant (p + p')/(q + q') of adjacent fractions p/q and p'/q' is
farther from the simpler of the two, mediant rounding rounds most of the
reals in the interval from p/q to p'/q' to the simpler of the two. Further, the
interval of reals that are rounded to p/q is longer the simpler p/q is. These
phenomena give the precise meaning of the statement that mediant rounding
is "biased in favor of simplicity".

Actually performing mediant rounding uses the theory of continued frac-
tions, which is also basic to the LCF representation. We will give an ex-
plicit algorithm for computing (R in the next section, a section that defines
standard continued fractions, defines concepts and notations associated with
them, and states some of their properties.

4.3 Standard Continued Fractions

For any real x, there exist unique reals no and r0 such that no is an integer,
0 ro < 1, and

x = n o + r O.

If ro $ 0, expressing ro as 1/(1/ro) and repeating the process gives unique
reals n, and rl such that n, is an integer, 0 < rl < 1, and

1x =no-+no + rl

32



Similarly, if r, :L 0 there exist unique reals n2 and r 2 such that n2 is an
integer, 0 < r2 < 1, and

1
x = no+

1 ± n2+r2

The sequence of integers no, nl,. generated in this way is called the standard

continued fraction for x, and the successive integers are called the fraction's
partial quotients. For the remainder of this section, assume that all continued
fractions are standard.

It is traditional to write a sequence of integers to be interpreted as the
partial quotients of a continued fraction in brackets, so for x and the ni as
above,

x = [no, hi,....

Any rational's continued fraction is finite - i.e., for x and the ni and ri
as above, if x is rational the process eventually terminates for some i with
ri = 0. As an example,

2.31 = [2,3,4,2,3].

Since for any integer n, n = (n - 1) + 1/1, relaxing the condition ri < 1

to ri 1 gives every rational two different continued fractions; e.g.,

2.31 = [2,3,4,2, 3] = [2, 3,4,2,2, 1].

The usual definition of continued fractions, with its ri < 1 restriction, elimi-
nates the second of these two possibilities. In the LCF representation, how-
ever, every finite continued fraction must have an even number of partial
quotients, so this representation eliminates the first of the two possibilities
for 2.31.

Many important irrational numbers have continued fractions that are
infinite but particularly simple. It is true, for example, that

V = [1, 2,2,2,2,2,...]

and that
e =[2, 1,2,1, 1,4,l1,1,6,1,1,8, 1,1,....

(Here e is the base of the natural logarithms.) Continued fractions do not
depend on the choice of a base, so continued fraction representations do not
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depend on properties of the numbers 10, 2, 8 or 16 ar decimal, binary, octal
or hexidecimal representations do.

For a real x = [no, nj,...], define the sequences of integers (pj) and (qj)
by

P-2 = 0,
q-2 =1,
P-1 = 1,
q-1= 0,

pi i •Pi-I + Pi-2, and
qi =ni q-1 + qi-2

for all i > 0. The rationals p,/qi are called the convergents of x. For all i > 0,
the integers pi and q and the convergents of x have the following properties,
all of which are classic number theory results [HW60] repreated in [MK80]:

1. pi/qi = [no, nl,..., nj

2. gcd(pi,qj) = 1 ;

3. (Adjacency) qtpi-1 - Pqi (--1)i;

4. (Alternating convergence)

P P2 P2< PL2- ... P3 <P

qo q2  q2j q2j-1 q3 q1

5. (Best rational approximation) If r/s $ pi/q and s < qi then

6. (Quadratic convergence)

qi(qi+1 I q) <j qiqi+l

We can now give an explicit algorithm for computing the mediant round-
ing function t, an algorithm strongly related to Euclid's greatest common
denominator algorithm [KM83a]. For an arbitrary real number x and a set of
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rationals R consisting of the members of a simple chain and their negations,
compute the convergents polqo,pl/ql,... of jlx. Then

x if x E R,
DR(x)= -FR(-x) if x < 0,

Pilqj if x > O,pi/qi E R,pi+l/qi+l V R.

As a point of interest, while the last convergent of x that is in R gives the
mediant-round of x to a value in R, a method similar to the one for computing
successive convergents from partial quotients gives values between the last
convergent in R and the first one not in R, and it can be used to find the
member of R that is actually closest to x [Lov86].

4.4 Generalized Continued Fractions

A more general form of continued fractions gives a faster algorithm for do-
ing mediant rounding, a possible extension of the LCF representation, and a
variant of some of the constructive-real representations to be considered in
Chapter 6. These generalized continued fractions give redundant represen-
tations of the reals that have the same sorts of advantages that redundant-
digit-set representations do. The basic idea of generalized continued fractions
is to stop considering only integers less than or equal to particular reals.

For any real x, let ma be any integer such that Ix - mol < 1, and let so
be the real such that

X = m0 + SO.

If so 0 0, express so as 1/(1/so) and repeat the process, finding an integer
m, and a real s, such that Isl < I and

1

mI + sl

Similarly, if si 0, find an integer n 2 and a real S2 such that 1s21 < 1 and

1
X Mo +
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Call any sequence of integers m0 , ml,.., generated by this process a gener-
alized continued fraction for x. As before, call the successive integers the
fraction's partial quotients.

Unlike standard continued fractions, many different generalized continued
fractions can represent the same real, even if a convention is adopted, say,
to force the number of partial quotients in a generalized continued fraction
to be even. However, convergents can be defined for generalized continued
fractions just as before, and they have many of the same properties.

If generalized continued fractions are restricted so that their partial quo-
tients are "best possible" integer approximations, the restricted generalized
continued fraction for every real is unique. Using the notation just given, let
the optimal (generalized) continued fraction for x be the one such that for
all i, Isi[ _ 1/2 and si has the same sign as mi if Isil = 1/2. The optimal
continued fraction for e, for example, is given by

e = [3,-4,2,5, -2, -7,2,9, -2,-11,2,13,-2, -15,...].

A standard continued fraction that does not have 1 as one of its partial
quotients is optimal, though 1 can (rarely) occur as a partial quotient in a
continued fraction that is optimal. All except possibly the first of the partial
quotients of an optimal continued fraction have magnitude at least 2. One
can show that the sequence of convergents for a real's optimal continued frac-
tion is a subsequence of the sequence of convergents for the real's standard
continued fraction. (C.f. [KM83a].) The convergents of a generalized, par-
ticularly optimal, continued fraction can thus converge to a real more quickly
than do the convergents of that real's standard continued fraction.

As an example, the number 49/30 has the standard continued fraction

49/30 = [1, 1, 1, 1,2,1,2],

with convergents 1/1, 2/1, 3/2, 5/3, 13/8, 18/11, and 49/30. The same
number has the optimal continued fraction

49/30 = [2,-3,4,-3],

with convergents 2/1, 5/3, 18/11 and 49/30.
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Matula and Kornerup give an algorithm in (KM83a] for performing me-
diant rounding that computes generalized continued fractions and always
attempts to impose the restriction Isil 1/2. This algorithm succeeds in
imposing this restriction most of the time, so it determines "almost optimal"
generalized continued fractions. An "almost optimal" generalized contin-
ued fraction's sequence of convergents is not necessarily a subsequence of the
corresponding standard continued fraction's convergents, but does determine
the last representable member of the standard continued fraction's sequence
of convergents [KM83a], and hence can be used to do mediant rounding.
This algorithm is faster than the algorithm given earlier because "almost
optimal" continued fractions' convergents typically converge faster than the
corresponding standard continued fractions' convergents do.

In the terminology introduced above, finding the optimal continued frac-
tion for an x being determined by successive approximations is only difficult
when one of the Isi I; 1/2. In practical algorithms where this problem arises,
like the faster mediant rounding algorithm or the generalizations of Gosper's
algorithm to be discussed in Section 4.5 and in Chapter 6, the algorithm
makes a simple trade-off between the benefit of having optimal continued
fractions rather than nearly-optimal ones and the cost of distinguishing opti-
mal from nearly-optimal ones. Some of the algorithms in Chapter 6 would not
work without this flexibility, which arises from the redundancy in generalized
continued fractions. The redundancy in generalized continued fractions also
provides a possible means of extending the LCF representation discussed in
Section 5.2.

4.5 Gosper's Algorithm

The LCF representation, some results in Chapter 6, and some of the research
questions in Chapter 7, all use or refer to Gosper's algorithm [Gos721 for find-
ing the sum, difference, product or quotient of two (standard or generalized)
continued fractions. We will first describe the algorithm for standard con-
tinued fractions, then indicate how to extend it to do arithmetic on LCF
encodings, and finally tell how to adapt it to generalized continued fractions.

First assume that all continued fractions are standard, and identify reals
and their continued fractions. Given continued fractions for the reals x and y,
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Gosper's algorithm computes the successive partial quotients in the continued
fraction for z, where

axy + bx + cy + d
exy + fx + gy + h

for almost any integers a, b, c, d, e, f,9 and h. The only restrictions on a
through h arise because of problems with possibly dividing by 0.

The algorithm treats a through h as assignable variables whose values
can be changed, and operates by inputting partial quotients from x and y,
outputting partial quotients to z, and making corresponding changes to the
variables a through h. The algorithm also treats x, y and z as assignable
variables whose values can change. To define notation, if

x = [no, ni,n 2 ,....,y = [mo, m,,m2 ,... Iandz =[ko, k,,k2 ... ,

let
X'= (n,n 2 ,.. .,y' = trom,m 2,.. .], andz' = [k,k 2...

Changing the sequence of remaining partial quotients for x from (no, nl,...)
to (nl,.. .), which the algorithm often does, is equivalent to replacing the
value of assignable variable x with the value x', and similarly with changing
the sequences of remaining partial quotients for y or z.

Gosper's algorithm inputs the first partial quotient of one of its inputs,
ay no of x, and updates the integers a through h as follows:

a a no + C,
b - b no+d ,

d b- ,
e eno + g,

f f -'no+h,
g - e , and
h - f.

By the relationship x = no+ l/z', the old value of z(x, y) is then the new value
of z(x', y). When it takes a partial quotient from the continued fraction of
x, though, the algorithm implicitly changes the (new) value of x to the (old)
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value of x', so the old value of z(x, y) is equal to the new value of z(x, y). This
process is called ingesting a partial quotient from x. The process of ingesting
a partial quotient from y is similar; the necessary undates to a through h can
be calculated using the relationship y = mo + 1/y'.

After one or more of its initial partial quotients have been ingested, the
value of x must be in the interval [1, oo), and similarly for y. If the denom-
inator of the updated expression defining z cannot be 0, which it cannot
be if the initial values of a through h defined one of the four operations of
addition, subtraction, multiplication and division, z(1, 1), z(1,oc), z(oo, 1)
and z(oo, oo) bound the possible values of z(x, y) [KM88]. The values of z
at these four extremes conv,-rge toward each other as the algorithm ingests
more partial quotients from x and y. In general, ingesting a partial quotient
of x reduces the uncertainty in z caused by uncertainty in x, and ingesting a
partial quotient of y reduces the uncertainty in z caused by uncertainty in y.

It might be possible to increase the parallelism in computations by choos-
ing the integers a through h to compute two or more operations at the same
time. In that case, having the denominator of z be 0 can be a problem
[KM881.

If a special symbol is used as an "end marker" for continued fractions, so
that it is possible to detect when all the partial quotients of an input have
been ingested, that input is called exhausted. It is only necessary to check
two extremes to determine the possible range for z(x, y) if one of x or y is
exhausted, and the value of z is completely determined if both x and y are
exhausted.

After Gosper's algorithm has ingested a large enough number of partial
quotients from z and y, the integer portion of z, the first partial quotient of
z's continued fraction, is determined whatever the current values for x and
y are. If this partial quotient is ko, the algorithm outputs k0 and updates a
through h as follows:
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a e*

b f,
c 91

d h- ,

e - a-ko-e,
f b-ko.f,
g - c-kog, and
h d-koh.

By the relationship z = ko + 1/z', the old value of z'(x, y) is then the new
value of z(x, y). When it outputs a partial quotient of the continued fraction
for z, though, the algorithm implicitly changes the (new) value of z to the
(old) value of z', so the continued fraction for the new value of z is the
remainder of the continued fraction for the old value of z. This process is
called outputting a partial quotient of z. If it is not yet possible to output
the next partial quotient of z, a good strategy for the algorithm is to ingest
a partial quotient from whichever of x and y seems to cause the most change
in z as z varies between its extremes.

Following Matula and Kornerup [KM881, call the 8-tuple of integers a
through h the coefficient cube; each number corresponds to a corner of the
cube. The processes of ingesting partial quotients of x and y and of out-
putting partial quotients of z thus cause changes in the coefficient cube, so
the coefficient cube reflects the current status of the computation of z.

Matula and Kornerup [KM88] give a method for evaluating z at its ex-
tremes that reduces the amount of computation needed and also makes their
extension of Gosper's algorithm to LCF encodings possible. They define an
8-tuple of integers A through H called a decision cube having the property
that the four extreme values of z are given by

D B C A
z(l, 1) = W, z(oo, 1) = Fp, z(1,oo) = G, z(oo, oo)= E'

The initial entries of the decision cube can be computed from the initial
entries of the coefficient cube by

A=a, B=a+b, C=a+c, D=a+b+c+d,
E=e, F=e+f, G=e+g, H=e+f+g+h.
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We will show how the algorithm updates the members of the decision cube as
it ingests and outputs partial quotients after we give Matula and Kornerup's
critical observation that the processes of updating the coefficient and decision
cubes can be described as matrix multiplications.

Matula and Kornerup [KM88] note that the transformation in the coef-
ficient cube produced by ingesting the partial quotient no of x is equivalent
to multiplying each of the two matrices

[d b] and [h f]

by the matrix

0 1

Similarly, the transformation in the coefficient cube produced by ingesting

the partial quotient mo of y is equivalent to multiplying each of the matrices

[d c] and [h g]

by the matrix

[1 0 
1

Likewise, the transformation in the coefficient cube produced by outputting
the partial quotient ko of z is equivalent to multiplying each of the matrices

[d h] and [c g]

by the matrix

I -k

The corresponding transformations on the decision cube are given for the
same ingesting of no from x by multiplying the matrices

D B and [ h H F

yC Ah mGtri
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by the matrix

no no-1;

they are given for the same ingesting of mo from y by multiplying the matrices

D C ]and H G
B A F E

by the matrix

Ko m -1];

and given for the same output of ko to z by multiplying the matrices

by the matrix

1[ -k]"

The observation that the updates to the coefficient and decision cubes
can be made by multiplying by matrices is significant because each of the
matrices

I no '1Mo no no -1 M' r o 0-1 1 -ko

can be factored, making it possible to ingest or output "pieces" of partial
quotients. This is critical to doing arithmetic in the LCF representation,
which is described in Subsection 5.2.3.

The most serious "catch" in Gosper's algorithm, ignoring for the moment
the possibility of ingesting or outputting "pieces" of partial quotients, is that
the four possible extreme values of z might all be close to a particular integer
k, with some slightly above k and some slightly below it. In such a situation,
it is impossible to determine whether the next partial quotient of z is k or
k - 1, and this situation might persist indefinitely as the algorithm ingests
more and more partial quotients from x and y, even though the four possible
extreme values of z would get closer and closer to k. Such a situation is
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exactly like not being able to determine the third digit of an ordinary base-
10 number whose partial, approximate computation begins 0.32999. ...

Gosper's algorithm can be extended to generalized continued fractions.
For x, x', y, y', z and z' as defined before, but without the restriction that
all except the first of the partial quotients of x, y and z must be positive,
the relationships x = no + 1/x', y = o + l/y' and z = ko0+ 11z' are
still valid. Gosper's algorithm can thus be applied even if x, y and z are all
generalized continued fractions. The only additional complications, described
in Subsection 6.4.2, are that there are more possibilities for having 0 as the
denominator of the expression defining z, and more extreme values to check
in bounding z. Even after ingesting one or more partial quotients from a
generalized continued fraction for x, for example, x might be any member of
the set (1, +oo) U (-oo, -1). Even if the generalized continued fraction for x
is known to be optimal, after ingesting one or more partial quotients x can
still be any member of the set [2, +o) U (-oo, -2].

Generalized continued fractions avoid the main "catch" in Gosper's algo-
rithm. If there is an integer k such that all the possible values of z are less
than distance 1 from k, then k can be taken as the next partial quotient of
z. If all the possible values of z are less than distance 1/2 from k, this choice
of k is optimal. It might sometimes happen that it is impossible to find the
optimal next partial quotient for z - in situations where the possible values
of z cluster around a point midway between two consecutive integers - but
it is always possible to find an acceptable next partial quotient for z. Decid-
ing how many partial quotients to ingest in such a situation is just a matter
of convenience, balancing the benefits of having optimal partial quoticnts
against the costs of determining them.

Being able to ingest and output "pieces" of partial quotients lessens the
impact of the main "catch" in Gosper's algorithm, but it does not eliminate
it. We discuss this problem in Subsection 5.2.4, sketch the method Matula
and Kornerup propose for solving it, and suggest that using extensions of
Gosper's algorithm to generalized continued fractions might give another
way of solving it.

The second "catch" with Gosper's algorithm is that the entries of the
coefficient cube, which determine the effects the next input partial quotients
have on the output, can grow arbitrarily large as more and more partial
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quotients are ingested from x and y. This problem is discussed in Section
5.2, particularly Subsection 5.2.4, and in Chapter 6. It also inspired some of
the questions for future research in Chapter 7.
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Chapter 5

Alternatives in the Literature

This chapter describes the following proposed representation systems for
computer arithmetic: The fixed-slash and floating-slash representations by
Matula and Kornerup [KM81,KM83a,MK85]; the binary-coded lexicographic
continued fraction (LCF) representation by Matula and Kornerup [MK83,
KM85,KM87,KM88]; the hybrid fixed-slash and floating-point representation
by Hwang and Chang [HC78]; the variable-length-exponent representation
by Iri and Matsui [M181]; the repeating-mantissa floating-point representa-
tion by Yoshida [Yos83J; the hyper-exponential representation by Olver and
Clenshaw [01v87]; and the finite p-adic representation by Gregory and Kr-
ishnamurty [GK841. Our descriptions of each alternative include comments
on its fitness as a scheme for representing the endpoints of intervals, and
whether it facilitates parallel computation.

We argue that the variable-length-exponent representation would be bet-
ter for command and control applications than standard floating-point rep-
resentations. This and the other representations form the basis for our new
representation proposals in Chapter 7.

5.1 Fixed-Slash and Floating-Slash

This section defines the fixed-slash and floating-slash representations sys-
tems proposed by Matula and Kornerup [KM81,KM83a,MK85]. Both sys-
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tems represent rational numbers as numerator-denominator pairs stored in
fields containing a fixed number of bits. A hypothetical "slash", similar to
the slash that ordinarily indicates division and separates numerators from
denominators in fractions such as 56501575/103247889, separates the nu-
merator in each field from the denominator. In the fixed-slash representation
the slash is always fixed at the center of the field of bits. In the floating-slash
representation the slash's position is determined by a separate slash-position
integer, and can be at any position in the field of bits and also at "positions"
outside the ends of the field.

5.1.1 Representations of Numbers

More specifically, in a (2k + 2)-bit fixed-slash system, a value consists of a
sign bit, k numerator bits, an exact/inexact bit, and k denominator bits.
The numerator and denominator fields give nonnegative integers p and q,
respectively, in binary. If s E {0, 1} is the sign bit, the value represents the
rational (-1)'p/q. The value is in normal form if gcd(p,q) = 1.

The rationals representable in a (2k+2)-bit fixed-slash system are exactly
the n = 2k - 1 order-n Farey fractions, where Fn is defined by

Fn = {+P :O < p,q< n,gcd(p,q) = l}.

It is easy to see that, since +1/0 = +oo is a representable value, the nonneg-
ative members of F form a simple chain for any n > 1, and every member
of Fn is either a member or the negative of a member of this simple chain.

Though we will not give them here, Matula and Kornerup define special
combinations with 0 in the numerator, denominator or both to represent ±0,

oo and not-a-number NaN values similar to those in IEEE floating-point
arithmetic [IEE85]. The exact/inexact bit is used to record whether the
rational stored is the exact result of the operation that produced it or an
approximation to this result.

In a (k + m + 1)-bit floating-slash system, with m > log 2 k, a value
consists of a sign bit, an exact/inexact bit, a (k - 1)-bit fraction field giving a
concatenated numerator and denominator-with- leading-bit-deleted pair, and
an m-bit signed binary integer giving the slash position. Let s E {0, 1) be
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the sign bit, let f be the value in the fraction field, and let e be the integer
stored in the m-bit slash position. If e is not the largest integer representable
in m bits, the number y represented by a (k + m + 1)-bit floating-slash value
is given by y = (-1)3 .p/q, where the positive integers p and q are determined
from e and f as follows: If 0 < e < k - 2, p is the binary integer given by the
first k-I- e bits of f, and q is the binary integer given by I concatenated with
the final e bits of f. If e < 0, p is the binary integer given by 1 concatenated
with all k - 1 bits of f and with a string of Iei O's, and q is 1. If e > k - 1,
p is 1 and q is the binary integer given by 1 concatenated with all k - 1 bits
of f and with e - (k - 1) O's. The value is in normal form if gcd(p,q) = 1.

If e is the largest integer representable in m bits, the value represented
is either -o or NaN. Though we will not give them here, Matula and
Kornerup list specific interpretations for e and f in this case to distinguish
the separate possibilities. As in fixed-slash, the exact/inexact bit in floating-
slash distinguishes exact rationals from approximating ones.

To give simple examples, let k = m = 5 and ignore the sign and ex-
act/inexact bits. The field f then contains 5 - 1 = 4 bits. If the slash
position is given by a signed binary integer, the possible values of e range
from -15 to 15. If e = 15, the value coded is -oc or NaN. Several examples
for e < 15 follow:

e=1 f = 1001 P= 10 02 = 4  q=112=3
e=2 f = 0110 P=012=1 q= 1102 =6
e=0 f = 1001 p = 10012 = 9  q=1
e=-2 f=1010 P=11010002= 10 4 q=1
e=4 f=1001 p=l q=110012=25
e=6 f=1010 p=l q=11010002=104

Actually, we have described only one of the possible encodings for floating-
slash values suggested by Matula and Kornerup. They note in [MK85] that
the operations on floating-slash values might be speeded up by putting the
denominator bits before the numerator bits and putting them in reverse
order.

Let the extended (k + m + 1)-bit floating-slash numbers be the rationals
representable by (k + m + 1)-bit floating-slash values with slash-position
values e such that e < 0 or e > k- 2. If e < 0, an extended (k + m + 1)-
bit floating-slash number is identical to a base-2 floating-point number with
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an implicit leading 1 and k - 1 more bits in its mantissa. If e > k - 2,
an extended (k + m + 1)-bit floating-slash number is very similar to such a
base-2 floating-point number with a negative exponent. The floating-slash
representation thus has floating-point's capacity to conveniently represent
numbers of widely varying magnitudes.

Let FSLk, the standard floating-slash numbers with (k - 1)-bit fraction
fields, be the union of {±0/1, ±-1/0} and the set of rationals representable
by (k + m + 1)-bit floating-slash values with slash-positions e in the range
0 < e < k - 2. It is easy to check that the nonnegative members of FSLk
form a simple chain.

It is also easy to check that FSLk is closely related to the n = 2 " - 1
set of order-n hyperbolic fractions H,, defined by

H. =, - : pq < n,gcd(p,q) = l}.

Specifically,
FSLk-j C H2k-i_. c FSLk.

The nonnegative members of Hn also form a simple chain, and FSLk can be
approximated by H2k-1_ 1 with the loss of less than one bit of representation
capacity. Thus while the floating-slash values are dependent on the choice of
2 as a base, a set of standard floating-slash numbers is very similar to a set
of hyperbolic fractions, so is almost base-independent.

The loss of storage efficiency for both the fixed-slash and floating-slash
representations created by the presence of nonnormalized values is minimal.
Let F,,+ be the positive order-n Farey fractions, and for a set X let IXI denote
the cardinality of X. By results of Dirichlet [MK851,

lim IjF l/n 2 = 6/r 2 ; 0.6079
n1-00n

and
li H.1 6/7r2 -, 0.6079.

n-- j{+p/q: pq < n,p > 1,q > 1}0

The loss from nonnormalized values is thus less than one bit.
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5.1.2 Arithmetic Operations

For fixed-slash and standard floating-slash numbers, arithmetic is performed
as described earlier: The result of any operation is computed as if the oper-
ation were first performed exactly and then mediant rounding was used to
round the result to a representable value. Matula and Kornerup give algo-
rithms for this arithmetic in [KM83a]. It is actually not necessary to compute
the exact result of an operation first and then apply a mediant rounding al-
gorithm; one can get the effect of this by initializing P-2, q-2, p-1 and q- 1 in
the mediant rounding algorithm (see Section 4.3) to values determined by the
binary operation and one of its arguments, and then applying the algorithm
to compute "convergents" of the other argument. See [KM83a] for details.
This means of doing arithmetic is essentially a special case of the algorithm
by Gosper described in Section 4.5.

Matula and Kornerup [KM83a] give algorithms using both the standard
continued fraction and the generalized continued fraction versions of mediant
rounding described in Sections 4.3 and 4.4. Both of these algorithms can be
made to perform arithmetical operations at the same time they deduce proper
roundings by making appropriate initializations. Matula and Kornerup show
how these algorithms can be implemented with binary shift and add/subtract
operations, and note which parts of these algorithms can be performed in
parallel. These observations are special cases of, and inspired, their ideas
on how arithmetic could be performed in LCF that will be described in
Subsection 5.2.3.

These algorithms produce correct, but possibly nonnormalized, results if
their arguments are not normalized. It is thus not necessary to normalize
arguments before performing arithmetic operations.

Matula and Kornerup also suggest how the add/subtract operations might
be speeded up by using carry-save or borrow-save arithmetic, techniques
that use redundancy in the representation of integers. The algorithms for
performing arithmetic and doing rounding require being able to normalize
integers and determine whether they are zero, operations that are generally
difficult for redundantly-coded integers. Matula and Kornerup give tech-
niques for reducing the zero-determination problem to the normalization one,
and for doing the necessary integer normalizations for both carry-save and
borrow-save representations by looking only at the first two digits [KM83a]. If
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redundantly-coded integers are used, integer results must be converted back
into standard binary to produce the final fixed- or floating-slash results.

Although arithmetic units for fixed-slash and standard floating-slash rep-
resentations have not yet been implemented in hardware, Matula and Ko-
rnerup give a theoretical analysis of the numbers of operations and sub-
operations that must be performed in carrying out their algorithms that
suggest the times needed to do fixed-slash and standard floating-slash arith-
metic are comparable to the times needed to do noniterative divide operations
on binary integers with similar numbers of bits [KM83a]. They also found
results consistent with these estimates in simulation experiments.

Matula and Kornerup do not give explicit algorithms for doing arithmetic
on pairs of extended floating-slash values or pairs containing a standard and
an extended floating-slash value. Presumably, computed results could always
be produced as if the operations were first performed exactly and nonzero
exact results were rounded as follows:

If the magnitude of the exact result is between that of the smallest and
largest positive standard floating-slash numbers, use mediant rounding
to round to a standard floating-slash number.

Otherwise, round the exact result to the nearest extended floating-
slash number if this number is determined uniquely, and round it to
the nearest extended floating-slash number whose final digit is 0 if there
are two equally-near such numbers.

We do not know, however, how making such an extension to the arithmetic
unit proposed by Matula and Kornerup would affect the unit's speed and
complexity.

5.1.3 Errors in Mediant Rounding

The gap sizes between consecutive representable numbers for both fixed-
slash and standard floating-slash representations vary greatly, so the amount
of error introduced by mediant rounding can also vary greatly. We will follow
Matula and Kornerup in approximating the fixed-slash and standard floating-
slash representations by Farey and hyperbolic fractions, respectively. By the
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results on simple chains given earlier, if p/q and p'/q' are two consecutive
Farey or hyperbolic fractions then

p'/q' - p/q = 1/qq', so P' p/q - 1/pq'.

For the order-n Farey fractions, the gap sizes for consecutive fractions in the
interval [0, 11 thus vary from about 1/n2 to about I/n, and for the order-n
hyperbolic fractions the relative gap sizes for consecutive finite fractions vary
from about 1/n to about 1/vf.

The absolute error introduced by mediant rounding on the interval [0,1] in
a (2k+2)-bit fixed-slash system can thus be as large as about 2 -k, and the rel-
ative error introduced by mediant rounding in a (k+ m+ 1)-bit floating-slash
system can be as large as about 2 -k/2. These error values are far worse than
the corresponding absolute error of about 2 -2k for 2k-bit binary fixed-point
numbers and the corresponding relative error of about 2 k for k-bit binary
floating-point numbers. However, as we will now show, typical absolute and
relative error values introduced by mediant rounding are much smaller and
are comparable to the errors in ordinary fixed-point and floating-point arith-
metic. Thus, even though mediant rounding tends to produce errors that are
larger than those for round-to-nearest rounding in computations whose ideal
results are not rational, the loss can be expected to be small.

Typical errors introduced by mediant rounding are much smaller than
maximum ones because typical gap sizes between consecutive Farey or hy-
perbolic fractions are much closer to the lower extremes than the upper ones.
Large gap sizes only occur around comparatively rare simple fractions. Fur-
ther, around these simple fractions the large gap sizes give mediant rounding
its desirable bias towards simplicity.

If R is a set of rationals consisting of the members of a simple chain and
their negatives, and fR is the mediant rounding function rounding reals to
members of R, Matula and Kornerup show the following [MK80:

* If R = F,, and X is a uniformly-distributed random variable on [0,11,

Exp((X - OR(X)I) -=6 + 

5 2 n2
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and for 1 <a < 2,

Prob{jX - (R(X)I > n- '} < 2n -2 .

If R = H,, and X is a log-uniformly-distributed random variable on
[1/n,n],

Exp IX $R(X)I <ogn

and for 1/2 < a < 1 and n sufficiently large,

Prob{ IX _R(X)I > n <4a.

Absolute and relative error values are thus closely distributed around ex-
pected values close to the error values for corresponding binary fixed-point
or floating-point numbers with the same number of bits of precision. Em-
pirical results on average and "better than all except one in a million or
one in a trillion" gap sizes and relative gap sizes, for implementations of
fixed-slash and floating-slash representations, are consistent with these ex-
pectations [MK85].

5.1.4 Empirical Results

Matula and Ferguson [FM85] give empirical information strongly related to
mediant rounding and standard floating-slash arithmetic. They produce this
information with a floating-point simulator that computes an approximation
to 4P for R a set of hyperbolic fractions. They use this simulator to perform
two sets of complicated calculations, one for ideal numbers which are all
rationals and the other for ideal numbers which are all irrationals. They
compare the results for these calculations, using the simulator to perform
the arithmetic operations, with the results for these calculations produced
using ordinary floating-point arithmetic.

Although they are intended to test floating-slash arithmetic, the results
actually compare two different ways of using floating-point hardware. The
results are stated not with respect to ideal numbers, but with respect to
the best-possible approximations to these ideal numbers for the version of
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floating-point arithmetic being used. They show, among other things, that
doing a floating-point simulation of mediant rounding can produce signif-
icantly more accurate answers for calculations involving quantities whose
ideal values are simple rationals.

The simulator represents a fraction p/q as the floating-point result of
dividing the integer p by the integer q. It simulates approximate rational
arithmetic by using a floating-point approximation to the rational arithmetic
algorithm described in Section 4.3. To perform addition, say, it starts with
two of its floating-point representations for rationals, computes the floating-
point sum v of these representations, uses floating-point arithmetic to com-
pute (approximations to) the partial quotients and convergents of v, finds the
last convergent p:/qi such that piq < m for an integer limit m, and returns
the floating-point result of dividing pi by q, as the result of the addition.

Note that since partial quotients are integers, many of the partial quo-
tients and convergents the simulator computes are exactly correct. Note
further, though, that the intermediate result v is only an approximation to
the ideal result of performing the desired operation on the pair of rationals
represented by the floating-point values combined to produce v, and the er-
rors in floating-point inversion will also eventually cause the computed partial
quotients for v to be incorrect.

The simulator produced the empirical results in [FM851 by running on
a CDC 6600. It used single-precision arithmetic in some tests, and double-
precision arithmetic in others. Since the floating-point values on the CDC
6600 have 48-bit mantissas in single-precision and 96-bit mantissas in double-
precision, the simulation took m = 24' for the single-precision calculations
and m = 2' for the double-precision ones. hI all cases it thus computed
convergents until the product of their numerator and denominator was no
longer exactly representable in the floating-point arithmetic currently being
used.

The computations involving only numbers whose ideal values are rational
were finding the inverses of Hilbert matrices. The order-n Hilbert matrix Hn
is the n by n matrix whose entry in position i,j, 1 < i,J < n, is 1/(i.+j + 1).
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For example,
[1/1 1/2 1/31

H3= 1/2 1/3 1/41.
1/3 1/4 1/5

Hilbert matrices arise in finding the best least-squares approximation, over
the interval [0,1], of a continuous function by a polynomial of a given degree
[FM85].

The problem of inverting Hilbert matrices is often used as a test of arith-
metic systems (c.f., the comments on matrix inversion in [KL85]) because
it can be solved exactly, using formulas included in [FM85], and is very ill-
conditioned. The entries of H are integers for all n, and the entry with the
largest magnitude increases very rapidly as n increases - the largest entry in
H -1, for example, is 179200. For any matrix A, let max(A) be the magnitude
of the element of A for which this magnitude is maximum. As Matula and
Ferguson explain in [FM85], if A is an n by n matrix, the condition number
n • max(A) • max(A - i) estimates how greatly an initial relative error in an
entry in A is magnified into a final relative error in an entry in a computed
solution to AX = B.

The base-10 logarithm of A's condition number thus estimates how many
base-10 digits are likely to be lost in the computed final entries of A-'; lost in
addition to those digits already lost by approximating these entries and the
entries of A by floating-point numbers of a particular precision. (These error
estimates could probably have been stated more clearly in terms of mantissa
bits lost in the computed results.) Using estimates in the literature, Matula
and Ferguson estimate that about 1.53n decimal digits of accuracy can be
expected to be lost in computing the inverse of H,,. Since the largest entry
in H,, is 1, this estimate is equivalent to estimating the greatest magnitude
of an entry in H- 1 as 101-53n .

The algorithm Matula and Ferguson use for computing the inverse of
an n by n matrix A, a method recommended as reducing computational
error, treats the identity AA - 1 = I as a collection of n systems of linear
equations. It solves each system as follows: It uses Gaussian elimination
with no pivoting to compute a factorization A = LU of A, where L and U
are lower- and upper-triangular matrices respectively. It then solves LY = B
by forward elimination, and solves UX = Y by backward substitution.
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In their results, Matula and Ferguson give estimated and observed num-
bers of decimal digits of accuracy lost in computing the inverses of Hilbert
matrices of different orders. The estimated digit-loss numbers are those given
by the condition numbers, and the observed digit-loss numbers are calculated
from the relative errors, scaled to fit the precision of the floating-point arith-
metic being used, in the entries of the computed matrices. They give results
for calculations using four different types of arithmetic:

1. Single-precision floating-point;

2. Double-precision floating-point;

3. Simulated approximate rational arithmetic, single-precision floating-
point and m = 2'; and

4. Simulated approximate rational arithmetic, double-precision floating-
point and m = 29.

The results, given in Figure 4 in [FM85], are striking. The observed num-
bers of digits lost using straightforward floating-point arithmetic, both for
single- and double-precision, closely match the losses predicted by the condi-
tion numbers - in both cases the observed loss numbers vary from about 1
to 4 fewer digits lost, but these differences are for estimated numbers of digits

L lost as large as 29. The numbers of digits lost using simulated approximate
rational arithmetic are much lower. The single-precision simulation inverts
each of H, through H9 with the loss of less than a single digit. The double-
precision simulation inverts each of H1 through H 19 with the loss of less than
a single digit; for H 19, by contrast, straightforward double-precision arith-
metic loses about 25 of the roughly 29 digits available in double-precision
floating-point.

Note that by the estimate used for the condition numbers, the magnitude
of the largest element in H-1 is on the order of 2 ' and the magnitude
of the largest element in H91 is on the order of 2 4". Both simulations
thus only begin to lose accuracy in inverting the Hilbert matrices when the
inverses begin to contain elements that are not exactly representable in the
floating-point arithmetic being used.

The simulations' observed numbers of digits lost increase sharply beyond
these limits, going to about 7 for single-precision on Hlo and to about 10 for
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double-precision on H20 , but the single- and double-precision simulations suc-
ceed in inverting all the Hilbert matrices through H 15 and H29, respectively,
before their numbers of digits lost exhaust all the digits available for their
respective forms of floating-point arithmetic. The straightforward single- and
double-precision floating-point calculations only retain some of the available
digits for matrices no larger than H 13 and H20, respectively.

Matula and Ferguson also give estimated and observed numbers of dec-
imal digits lost in computing the inverses of the matrices H' = DHnD for
D a diagonal matrix whose ith entry is the ith root of a randomly-chosen,
108-binary-digit number in the interval (0,1). They give results for the worst
cases with 25 different choices of the initial random number. The condition
number of an H' is the same as that of Hn, but its ideal entries are irrational.
The estimated number of digits lost for inverting an H' is the same as the
number for inverting H,,. Matula and Ferguson give observed digit-loss re-
sults for calculations using straightforward double-precision arithmetic and
simulated approximate rational arithmetic, computed with double-precision
floating-point and m = 296. In the simulated rational arithmetic calculations,
",he initial entries of the H" are rounded to rationals p/q such that pq < 2'.

The results, given in Figure 5 in [FM85], show that the actual num-
bers of digits lost for both floating-point and simulated approximate rational
arithinetic calculations are virtually identical, and both are virtually identi-
cal to the estimated numbers of digits lost given by the condition numbers.
The floating-point results are typically better by a fraction of a decimal
digit. These results, together with the results on inverting Hilbert matrices,
strongly support the assertion that for values stored in comparable numbers
of bits, floating-slash arithmetic would produce much better results than
floating-point on calculations whose ideal values are rational, and would pro-
duce comparable results on calculations whose ideal values are irrational.

5.1.5 Potential Applications

The theoretical and empirical results given above both indicate that floating-
slash arithmetic, particularly floating-slash arithmetic that includes extended
floating-slash values, would perform as well as floating-point for typical appli-
cations and perform significantly better than floating-point for applications
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doing calculations on rational numbers. The chief disadvantage of floating-
slash is that it is slower, though its other disadvantages - not being ap-
propriate for interval arithmetic, and presumably producing computational
errors that are harder to analyze and bound - could also be significant. As
a practical matter, hardware doing floating-point arithmetic is also widely
available, while hardware doing floating-slash arithmetic is just now being
developed.

Matula and Kornerup [MK8VJ list these potential applications for systems
doing approximate rational arithmetic:

" Symbolic computation programs that mix exact rational and approxi-
mate real arithmetic;

" Combinatorial optimization problems, as in linear programming with
sparse 0-1 constraint matrices; and

" Knowledge-based systems applications in which it is critical to recog-
nize simple rationals.

We were unable to find applications in command and control software
where rational numbers arose to a significant extent. In particular, they did
not arise in the fragment of the Hostile Booster Interception code [App87]
that the Reals project examined, and we learned of no such applications
through our inquiries with our Air Force contract monitors and with experts
in Operations Research.

Floating-slash arithmetic thus seems to be a number representation sys-
tem with advantages over floating-point, but advantages that have not yet
been obvious enough to inspire its widespread use. Significantly, Knuth
[Knu8l, page 316] lists the following as an exercise of "significant open prob-
lem level" difficulty:

Modify one of the compilers at your installation so that it will re-
place all floating-point calculations by floating-slash calculations.
Experiment with the use of slash arithmetic by running existing
programs that were written by programmers who actually had
floating-point arithmetic in mind..... Are the results better or
worse when floating-slash numbers are substituted?
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Note further that the simple simulator program used by Matula and Fer-
guson [FM85], and described above, captures much of the advantage of me-
diant rounding, with mediant rounding's bias in favor of simple results, for
computations on rational numbers, and does it with existing floating-point
hardware. Although a hardware implementation of floating-slash arithmetic
might produce still more accurate results - the simulator computes only
an approximation to floating-slash arithmetic - the main advantage of such
hardware would be its greater speed. For computations involving rational
numbers for which speed is not a factor, the simulator will presumably suf-
fice.

Neither the fixed-slash nor floating-slash representation is appropriate as
a means for representing the endpoints of intervals, and neither facilitates
parallel computation, though parts of individual operations can be done in
parallel.

5.2 The LCF Representation System

This section defines the Lexicographically-Coded Continued Fraction (LCF)
representation by Matula and Kornerup [MK83,KM85,KM87,KM88]. This
representation gives a binary encoding of finite initial segments of real num-
bers' standard continued fractions; for the remainder of this section, we will
assume all continued fractions are standard unless we specifically note oth-
erwise. If the number of bits available for each binary encoding is fixed,
the LCF representation becomes a form of approximate rational arithmetic.
The encoding has the convenient property that the lexicographic order on
real numbers' binary encodings is equivalent to numerical order on the real
numbers, hence the representation's name.

With the LCF representation, arithmetic can be performed in an on-line
fashion. (On-line arithmetic was described in Section 3.4.) The LCF repre-
sentation thus facilitates parallel computation, and combines the advantages
of on-line arithmetic with those of approximate rational arithmetic. Further,
the LCF representation supports performing computations to a specified pre-
cision. Representation systems giving on-demand accuracy, and carrying out
calculations to precisions determined by the numbers being calculated, will
be considered in Chapter 6.
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This section defines the LCF representation, discusses its efficiency as a
means of storing real numbers, and describes how arithmetic can be per-
formed on numbers given in their LCF forms. It ends with a brief discussion
of how redundantly-coded binary numbers or generalized continued fractions
might be used to avoid a throughput problem that can arise in LCF arith-
metic.

5.2.1 The LCF Encoding

We will present the LCF encoding by first giving an encoding for positive in-
tegers, then an encoding for the continued fractions of nonnegative rationals,
then an encoding for arbitrary continued fractions, and finally an encoding
for arbitrary real numbers. All encodings are in binary, and are given by
Matula and Kornerup in [MK831.

Every positive integer m has a base-2 representation

m = (lb.lb. 2 " . bo)2 = 2' + b.- 12' 1 +"" + bo.

The bit string l'Ob,,_jb,,_ 2 ... bo, where 1' denotes n consecutive l's, then
gives a self-delimiting binary encoding of m; the code for 1 can be taken
to be 0, and +oo can be taken to be an infinite string of l's. Since these
codes are self-delimiting, it is possible to concatenate the coAc, for a sequence
of positive integers into a single bit-string, then unambiguously deduce the
sequence of integers from this string. Note that the lexicographic order on
these codes matches the numerical order on the corresponding integers.

Every nonnegative rational has a continued fraction [qo,. . . , qk] such that
qo > 0 and qj > 0 for all i 0. This continued fraction can be thought of
as [qO,.. . ,qk,+00], so +oo can be used as an end-marker. As we noted in
Section 4.3, the continued fraction can be chosen so that k is even. If i is
even, let si be the self-delimiting binary code for qj, and otherwise let it be
the l's complement of the self-delimiting binary code for qj.

Code the nonnegative rational with continued fraction [q,..., qj] as fol-
lows: If qo = 0 - i.e., if the rational is less than 1 - take the first bit of
the code to be 0 and take the rest of the code to be the concatenation, for
all 1 < i < k, of the si. If qo > 0, take the first bit of the code to be 1 and
take the rest of the code to be the concatenation, for all 0 < i < k, of the s,.
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Note that the code for 0 is 0, and that the code for every rational ends with
an infinite string of O's. Further note that since increasing an even-indexed
partial quotient of a (standard) continued fraction makes the corresponding
real larger, while increasing an odd-indexed partial quotient makes that real
smaller, the lexicographic order on these codes matches the numerical order
on the corresponding rationals.

For an arbitrary rational r, if r > 0 code r as 1 followed by the coding
just given of Ir, and if r < 0 code r as 0 followed by the 2's complement of
the coding just given of Itr. (Taking 2's complements is necessary to have
the codes always end with infinite strings of O's.) Lexicographic order on the
codes still matches numerical order on the corresponding rationals.

Here are several examples, taken from [MK83], of this coding for arbitrary
rationals. They illustrate why various aspects of the coding are necessary.
Every code ends with an infinite string of O's.

8 11111 -1/8 01111
4 11110 -1/4 01110
3 11101 -1/3 01101
2 11100 -1/2 01100

5/3 11011 -3/5 01011
3/2 11010 -2/3 01010
1 11000 -1 01000

2/3 10110 -3/2 00110
3/5 10101 -5/3 00101
1/2 10100 -2 00100
1/3 10011 -3 00011
1/4 10010 -4 00010
1/8 10001 -8 00001
0 10000 ±o 00000

Finally, for an arbitrary real, code the real as the limit of the codes for
the initial segments, rewritten if necessary to make their final indexes even,
of that real's continued fraction. Lexicographic order on the codes matches
numerical order on the corresponding reals.
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5.2.2 LCF Gap Sizes and Range

We will present theoretical and empirical results from [KM851 on the sizes
of the gaps between consecutive values representable in an LCF system for
which there is a fixed bound on the number of bits in an LCF code. By
abuse of terminology, we will use "the LCF encoding" to refer, depending
on the context, to either the encoding of positive integers, the encoding of
nonnegative rationals, or the encoding of arbitrary rationals just described.
Note that the bit-length of a positive integer's LCF code increases by 1 if
the integer is interpreted as a nonnegative rational, and the bit-length of a
nonnegative rational's LCF code increases by 1 if the nonnegative rational is
interpreted as an arbitrary rational.

If a rational p/q is chosen randomly and uniformly over [0, 1], for suffi-
ciently large i the probability that the ith partial quotient of this rational's
partial fraction is j is [Knu8l]

log 2 (j 
+ 1)2

j(j + 2)"

By information- theoretic arguments, an optimal coding for this frequency
distribution would use

log_(og2 ( + 1)2

j(j + 2)

bits to code j. With the LCF encoding, the expected number of bits per
partial quotient for rationals chosen uniformly over [0, 1] is then 3.52, while
for the optimal coding the expected number of bits per partial quotient would
be 3.45 [KM851.

In particular, the LCF code for 1 is 0, which requires only 1 bit, while an
optimal code would use 1.27 bits. The LCF codes for 2 and 4 are 100 and
11000 respectively, requiring 3 and 5 bits, while an optimal code would use
only 2.56 and 4.09 bits for these numbers. For LCF codes with only k bits, in
the interval [0, 1] the smallest gap sizes between consecutive LCF values can
thus be expected near the rational with continued fraction [0,1, 1,1,. .. 4]
and LCF code 01010101... 01, while the largest gap sizes can be expected
near the rational with continued fraction [0,2,4,...,2,4] and LCF code
00111100001111 ... 00001111; in the first case the gap sizes grow asymp-
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totically as 2- '3885k, and in the second case they grow asymptotically as

2 -0.8268k [KM85].

Matula and Kornerup give exhaustive or Monte Carlo analyses of gap
sizes on [0, 1] for k-bit LCF codes, and the maximum and minimum gap sizes
are consistent with these expectations. In all cases, gap sizes vary between

2 -I "38k and 2 -0.82k, and keep this range of variation even as k increases.
However, as k increases the gap sizes become log-normally distributed around

2 -. "
k, exactly the gap size for 2 k uniformly-distributed points in [0, 1]. For

k = 128, 99.9% of the gap sizes are between 2 -. 121k and 2 -. '0k . Thus even
though the extreme gap sizes persist as k increases in being exponentially
larger or smaller than the gap size for uniformly-distributed points, typical
gap sizes become closer to those for uniformly-distributed points [KM85].
The k-bit LCF codes are not asymptotically uniformly dense on [0,11 as the
k-bit fixed-slash values are; this shows the dependence of LCF codes on the
base 2.

LCF codes also do not have the ability to represent numbers of greatly
varying magnitudes in fixed numbers of bits, one of the great advantages
of the floating-point and extended floating-slash representations. Matula
and Kornerup suggest using a separate, independent representation of the
large-magnitude partial quotient q in continued fractions of the forms [q,...,
[0, q,...] and [-1,1, q,.. . to extend the range of representable values [MK83].
Another possibility, similar to one of the means for representing rationals
given in our interim report (see Section 4.1), is to represent reals as fractions
in the interval (-1,1) multiplied by powers of 2; the fractions could be given
by LCF codes and the powers by an integer exponent. We will note how
arithmetic operations might be performed on numbers represented in this
way in the next subsection.

5.2.3 LCF Arithmetic

As we described earlier, in Gosper's algorithm the necessary updates to the
coefficient and decision cubes can be made by multiplying by matrices of the
forms

1 1 1 and p 1 1 -p
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for nonnegative integers p. If p > 0, by the base-2 representation of p,
p 2n + b_12 n- 1 + .-- + b0 for some collection of bi, with each bi E {0, 1}.

These matrices can be factored as follows:

[ 0 1 ].[ 0 ]fn [0 1i][1/2 bn1/2 ]. . 1/2 bo/2 ]I 1p = 0 2 1 1 0 1 ' 0 1

SIn ., bb _

pp 1 2 12 2 2 2

and
[0 1 ] I I , 0]"[ 0 11 1 2 1/ -bn_1/2]..1/2-bo/2]

I1 -p 0 2 1 - 0 1 0 1 "

Note that there is a one-to-one correspondence between the factors in
these factorizations and the bits in the LCF code for p. In Gosper's algorithm,
it is thus possible to ingest individual bits of the LCF codes for the partial
quotients of x and y, and output individual bits of the LCF codes for the
partial quotients of z. It is only necessary to maintain status flags recording
things such as whether the partial quotient being ingested has an even or
odd index to keep track of whether each bit ingested should be interpreted
as itself or its negation and whether each bit output should be output as itself
or its negation. It is thus possible to do approximate rational arithmetic at
the bit level, and produce more accurate results if they are demanded just
by outputting more bits.

Every input bit corresponds to a shift or shift-and-add-or-subtract oper-
ation. If p = 0, the necessary updates can also be made with a single such
operation. Further, four of the eight necessary coefficient updates can be
performed in parallel [KM88].

In producing output, it is not necessary to ingest inputs until the next
partial quotient of z is determined, but only until the next bit of the LCF
encoding of the next partial quotient of z is determined. This generally
makes it possible to produce output much earlier. (This method of improv-
ing throughput is more natural than the idea suggested by Jones [Jon84
mentioned in our interim report; Jones suggests giving partial quotients as
sequences of nested intervals and using these intervals to get tighter bounds
on the extreme values of z.)
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A general description of the extension of Gosper's algorithm to LCF codes
follows. A more detailed description is in [KM88]. For simplicity, our de-
scription assumes that both x and y are positive and says "output 0", say,
instead of "output whichever of 0 or 1 would be interpreted as the bit 0 in
the LCF code for the partial quotient of z currently being produced".

1. Initialize the counter c to 0.

2. Input bits from x and y until it is possible to determine that z > 2 or
that the first partial quotient of z is 1 - i.e., that

2 < AlE, B/F, C/G, D/H

or that
1 < A/E, B/F, C/G, D/H < 2.

In the first case, output 1, perform the
1 01

transformation for output to z, increment the counter c, and repeat
step 2. (This has the effect of dividing z by 2 and continuing.) In the
second case, output 0, perform the

[1-1 ]
traiisformation for output to z, and go to step 3.

3. While c > 0, decrement c, then input bits from x and y until it is
possible to determine that z > 2 or that the first partial quotient of z
is 1. In the first case, output 0 and perform the

[1/2 0]0 1
transformation for output to z; in the second case, output 1 and per-
form the

[ 1/2 -1/2]

transformation for output to z. After c = 0, go back to step 2 to
produce the next partial quotient of z.
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Matula and Kornerup give estimates of the average numbers of partial
quotients in the continued fractions for rationals in the set H, of hyperbolic
fractions. They also give estimates of the numbers of shift and add/subtract
operations that must be performed per partial quotient for arithmetic oper-
ations that take members of I1,, as inputs and produce members of H,, as
outputs [KM87]. These estimates are based on the assumption that bits are
output at roughly the same rate they are ingested, an assumption that is not
always correct and is discussed more fully in the next subsection.

Since Gosper's algorithm can compute operations other than addition,
subtraction, multiplication and division by making appropriate initializations
of the coefficient cube, it could be used to perform arithmetic operations
on reals given as rationals in the interval (-1, 1) times a power of 2. For
example, for reals given as x. 2' and y. 2j, where x and y are given by LCF
codes, Gosper's algorithm could be used to compute x + y by initializing the
coefficient cube to a = 0, b = 2, c = 2j, d = 0, e = 0, f = 0, g = 0 and
h = 1. Questions related to this approach are noted in Chapter 7.

5.2.4 Possible Uses of Redundancy

Although the extension of Gosper's algorithm to LCF codes is usually able
to output the next bit of z after ingesting only a few bits of x and y -

in simulations, Matula and Kornerup found typical delays of about 5 bits
[KM87] - there are situations where potentially infinite numbers of bits must
be ingested from x and y to determine the next output bit for z. Matula and
Kornerup [KM88 give an example where the result is either slightly greater
than 2, with LCF form 11000- .01 ..., or slightly less than 2, with LCF
form 10111 ... 10.-*. This example is equivalent to not being able to decide
whether a number's continued fraction is [2, k] or [1,1, m] for large integers
k and m.

This is exactly the sort of problem that arises with nonredundant repre-
sentations of numbers. Matula and Kornerup are currently investigating the
possibility [KM88] of using the redundant "bit" set {0, 1, !}, where 1 = -1,
to avoid this problem. In the example, the arithmetic unit could output 1
and "correct" it if necessary later by outputting i. They hope in this way to
guarantee uniform throughput.
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As we noted in Section 4.5, the redundancy in generalized continued frac-
tions allows these continued fractions to avoid the "unlimited wait for the
next partial quotient" problem in Gosper's algorithm. They could also be
used to guarantee uniform throughput. Related results and questions are
given in Chapters 6 and 7.

The second major problem with Gosper's algorithm, that of how big the
entries of the coefficient cube become as the inputs are ingested, also arises
for LCF arithmetic. In their simulations, Matula and Kornerup noted that
these elements seem to grow about as quickly as bits are ingested from the
inputs, so order of k-bit registers for storing the coefficients should work for
performing operations on k-bit LCF codes. They list accurately determining
the necessary size of these registers as a problem for future research [KM88].

It is possible that using a redundant bit set will not only increase through-
put, but also decrease the necessary sizes of the coefficient-cube registers. Our
results on the growth of the coefficient-cube entries for versions of Gosper's
algorithm producing standard and generalized continued fractions are de-
scribed in Subsection 6.4.2; they are essentially contrary to our expectation
that in,:reased throughput would reduce the growth of these entries. The
problem of trying to limit the sizes of the necessary registers by using other
possibie encodings also inspired a question for future research in Chapter 7.

5.3 Hybrid Floating-Point and Fixed-Slash

Hwang and Chang [HC78] propose an extension of binary floating-point that
allows them to represent many rational numbers exactly. As in ordinary
floating-point, they represent each value as a mantissa times a power of
2, and as in ordinary floating-point a mantissa can be a radix fraction, or
norma ized base-2 number in the intcrval [1/2,1). Unlike ordinary floating-
point, aowever, the manitissa c-n also be the ratio of two integers p and q
such that 1/2 < p/q < 1. If there are 2k bits in the field determining the
mantissa, Hwang and Chang represent the fraction p/q as two k-bit integers
q - p and q. Since it is always true that q - p < q/2, with this representation
the first bit of the field determining the mantissa is always 0 if the mantissa
is a rational and is always 1 if it is a 2k-bit radix fraction.
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Let R2k be the 2k-bit radix fractions, and let

U2k = F2p U R2k

be the union of the 2k-bit radix fractions with the Farey fractions F2k. Hwang
and Chang prove that there is at most one member of F2k in the gap between
two consecutive members of R2k, they define a rounding mapping each real
number x in [1/2, 1) to the nearest value in U2k, and they give an algorithm
based on computing the continued fraction expansion of x for computing this
rounding.

They perform every operation as if its result were first computed exactly,
then rounded to the nearest member of U2k. Although they do not mention
the possibility, their arithmetic could presumably be extended to support
each of the four rounding modes - to-nearest, upward, downward, toward-
zero - available in IEEE floating-point arithmetic [IEE85].

They compare relative errors in rounding real numbers in the interval
[1/2,1) to the nearest radix fraction and to the nearest value representable
in their system - i.e., they compare relative errors in rounding these reals to
the nearest values in R2k and in U2k. For a real number x in this interval, let
p(x) be the machine-representable value x is rounded to in whichever of R2k

and U2k is currently being considered. Let the relative representation error
for a real number x E [1/2,1) be I(p(x) - x)/xl.

Using uniformly-distributed rationals in the interval [1/2,1), chosen so
that the difference between successive rationals is smaller than the smallest
gap in U2k, Hwang and Chang show that for 8 < k < 20 the average relative
representation error when these rationals are approximated by members of
UV2k is between 10.2% and 11.4% lower than the average relative representa-
tion error when they are approximated by members of R2k. Their representa-
tion system thus gives a 10% improvement in relative accuracy, without using
any more bits, over a version of floating-point that does not have implicitly-
normalized mantissas; a version of floating-point with implicitly-normalized
mantissas would have one more bit of precision, with a roughly 50% improve-
ment in relative representation error. Their system also makes many exact
rational calculations possible.

Hwang and Chang presume operations in their system will be slower than
those in floating-point arithmetic, but propose an arithmetic processor with
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a pipelined design that they hope can alleviate this problem. They give no
performance results or estimates.

If upward and downward rounding rounding were available in their arith-
metic, their representation would only be slightly worse than floating-point
with implicitly-normalized mantissas as a means for representing the end-
points of intervals. It does not facilitate parallel computation.

5.4 Variable-Length Exponents

Iri and Matsui [M181] propose a sensible extension of floating-point arith-
metic. Their basic idea is to use binary floating-point numbers with a vari-
able number of bits in the field determining the exponent. In this way, in
numbers with moderate exponents more bits can be used to make the man-
tissa more precise, and in numbers with extreme exponents bits that would
otherwise be used for the mantissa can be used to store the exponent. The
resulting values are thus more accurate, using the same number of bits, than
ordinary floating-point values for numbers of moderate size, and have such a
large range that overflow and underflow are virtually impossible.

Iri and Matsui credit Morris [Mor73] with the idea of using a variable-
length exponent to make more bits of precision available for moderately-sized
numbers; their innovation was using the same concept to make overflow or
underflow virtually impossible.

More specifically, they propose for 64-bit values that the first bit code
a sign and the final 6 bits code an exponent-length of 0 through 57. If the
exponent-length value is n, the n last bits before the final 6 bits code an
exponent, including its sign; if n -- 0 the exponent is 0. The remaining
64 - 1 - 6 - n bits code a binary mantissa; if n = 57 the mantissa is taken to
be 1. If n < 57, the mantissa is implicitly normalized to fall in the interval
[1/2, 1), so has an implicit leading bit of 1. Values of the exponent-length
field from 58 to 63 code infinite and "Not a Number" values.

Actually, the last paragraph defines only level 0 of the representation Iri
and Matsui propose. They also propose level-1 values ia which the mantissa
is taken to be 1 and the value given by the mantissa and exponent fields
is the value of the exponent. For example, except for the level indicator a
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value that codes 0.5 . 2 at level 0 codes 1 • 205 "217 at level 1. Iri and Matsui
define higher-level values similarly, so that a level-n value codes the exponent
of a level-(n + 1) value. Values of the exponent length between 58 and 63
could be used to code the level indicators. Though they did not say so, it
is probably true that x, x + x and x • x are indistinguishable for levels no
higher than about 6, so underflow and overflow could not occur, as it cannot
in Olver and Clenshaw's system to be described in Section 5.6.

Iri and Matsui did not propose specific encodings of higher-level num-
bers, and did not carry out simulations of arithmetic for them as they did
for level 0. We do not believe having higher-level numbers would give any
significant advantage over having level 0 with special codes for ±00. The
positive numbers representable by level 0 range over the extremes

2 
-256 = 2 

.72 0 5759 4 0 3 7 9 2 7 9 36 , 10± 2 169 149722 0 7 9 4 3 .8,

which should be more than enough; as we noted in our interim report, there
are estimated to be only about 10"0 nucleons in the known universe [FH651.

Demmel [Dem87] raises the objection to Iri and Matsui's representation
system that it makes writting programs that produce results with a guar-
anteed maximum relative error when overflow and underflow do not occur
more difficult. Demmel also notes, however, that if the hardware performing
operations for Iri and Matsui's system were modified to maintain a regis-
ter giving the largest exponent-length that has arisen in calculations since
this register was last reset under program control, the value in this register
could be used to get a lower bound on the lengths of the mantissas arising
in these calculations. This bound could be used as the fixed mantissa length
is normally used to establish limits on the accuracy of floating-point results.

We believe that the advantages of variable-length exponents outweigh
their disadvantages for realistic applications of computer arithmetic, partic-
ularly for command and control applications. It is usually more useful to
know a number with less precision than to merely know that it overflowed
or underflowed. We believe the situation is analogous to that of the par-
tial underflow called for in the IEEE floating-point standard [IEE85], where
some of the mantissa bits are discarded to produce nonzero numbers with
magnitudes that would otherwise be too small to represent. (We note, how-
ever, that partial underflow was one of the most controversial features of the
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IEEE standard; c.f., [FW79,Coo8l,Dem8l].) Variable-length exponents also
give greater accuracy for moderately-sized numbers, numbers that arise most
often in typical applications.

Iri and Matsui only propose performing arithmetic as if results are first
calculated exactly and then rounded to the nearest representable values as in
IEEE round-to-nearest rounding. That is the form of rounding used in their
simulations of arithmetic operations for their representation. There seems
to be no reason, though, why their representation could not be used with
each of the four rounding modes possible in IEEE floating-point arithmetic
[IEE85].

Iri and Matsui [M181] give several examples of calculations involving
numbers of widely-varying magnitudes, particularly calculations of binomial-
distribution probabilities of the form

Xk ( ) pkqN -
k

k

for nonnegative integers N and k such that N, k and N - k are all large,
and reals p and q such that p + q = 1. Simulations of calculations using their
system perform significantly better than do either IBM 360 or IEEE-standard
floating-point arithmetic. Their arithmetic is also not nearly so vulnerable as
the others are to producing inaccurate results because of underflow or being
unable to complete calculations because of overflow.

If upward and downward rounding were available in their arithmetic, their
representation would be significantly better than floating-point as a means
for representing the endpoints of intervals. It does not facilitate parallel
computation.

We propose several extensions of Iri and Matsui's representation in Chap-
ter 7, including an extension that does facilitate parallel computation. These
extensions use previously described ideas from Matula and Kornerup, and
an idea from Aberth [Abe88] to be described in Chapter 6.
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5.5 Recurring-Digits Arithmetic

Yoshida [Yos83] proposes a representation system based on extending "recur-
ring decimals" to arbitrary bases and representing them in computer calcula-
tions by adjoining "length of the recurrent portion of the mantissa" counts to
what would otherwise be ordinary floating-point values. This representation
thus provides an alternative way of exactly representing simple rationals as
well as ordinary floating-point values.

Generalizing ordinary notation for recurring decimals, for base b the value

O.dl ... dnd,+. ... d,

represents the number

n+r d,- bn+r-i - E L= d.b -i

bP. (b- -1)

in the interval [0,1]. In Yoshida's representation, which she calls FLP/R*,
each value contains a "recurring portion" count, a sign, a mantissa and an
exponent. On a hypothetical computer with base-10 arithmetic and 10 digits
in the mantissas of its floating-point values, for example, the value with
recurring portion count 3, positive sign, mantissa 3456756756 and exponent
4 would represent the number 0.345-67- 10'. Because the recurring portion of
each value must be on the right end of the mantissa, the mantissa need not be
normalized. On the same hypothetical computer, for example, the number
0.13 = 2/15 would be represented by the FLP/R* value with recurring-
portion count 1, positive sign, mantissa 0000000013, and exponent 8.

Unlike floating-point, there is duplication in the numbers represented by
the mantissas and recurring-portion counts in the FLP/R* system, since
in ordinary recurring decimals equalities such as 0.1 = 0.09 and 0.3412 =
0.341-2 occur. As might be expected, though, and as Yoshida demonstrates
with empirical results, the relative effect of such redundancies on the total
number of different numbers representable by FLP/R* values with fixed-size
mantissas becomes progressively less as the size of the mantissas increases.
Also unlike floating-point, the gaps between representable values with the
same exponent in the FLP/R* system are not uniform.
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Arithmetic can be performed in the FLP/R* system by expanding out
the recurrent portions, if any, of the mantissas of the values being combined
to a sufficient number of digits, performing the desired operations on these
expanded values as in ordinary floating-point arithmetic, and then rounding
the computed values to the nearest values in the FLP/R* system. Yoshida
gives the maximum number of digits that each operand's mantissa must be
expanded to for each of the arithmetic operations; this number of digits is
never more than twice the sum of the number of digits in the operand's
mantissa and the length of its recurrent portion.

Since simply incrementing the last digit in a mantissa gives a new value
representing a number at least as large as any number represented by the
original mantissa with some recurring-portion count, the number of possible
FLP/R* values with a fixed number of digits in their mantissas that must be
considered to find the one closest to a computed expanded result is at most
one larger than this fixed number of digits. As an example, in a base-10
system with 6-digit mantissas the possibilities that must be considered in
rounding the expanded result 485656524232, written to make the example
clearer as 485656 524232, are just

485656000000,
485656666666,

485656565656,
485656656656,
485656565656,
485656856568,
485656485656, and
485657000000.

The closest of these is the next-to-last one, so in the FLP/R* system the
expanded result would be rounded to a value with mantissa 485656 and
recurring-portion count 6.

Although she only discusses arithmetic performed as if the results were
first computed exactly and then rounded to the nearest representable value,
the same arguments that limit the number of possibilities that must be con-
sidered in rounding the expanded results also limit the number of possibilities
that must be considered in other roundings; her representation could be used
for each of the four roundings possible in IEEE arithmetic [IEE85].
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Yoshida does not give possible hardware implementations of the FLP/R*
system, and does not discuss the critical question of operation speed. She
produces her empirical results with an FLP/R* simulator.

Although she does not propose a specific binary implementation of her
representation system that would make storage-efficiency comparisons pos-
sible, the recurring-portion counts probably cause her representation to be
significantly less efficient in using storage than floating-point; contrast this
with the use of storage in Hwang and Chang's hybrid floating-point/fixed-
slash described in Section 5.3. It would thus not serve as well as a means
of representing the endpoints of intervals. The representation also does not
facilitate parallel computation.

5.6 Hyper-Exponential Representations

Olver and Clenshaw [Oiv87] propose a representation system that is closed
under the usual arithmetic operations, so overflow and underflow are not
possible. Actually, they propose two systems, one of level-index and the
other of symmetric level-index arithmetic. The level-index system is a simpler
special case of the symmetric level-index system. The level-index system is
immune from overflow while the symmetric level-index system is immune
from both overflow and underflow.

The level-index system uses the "generalized" exponential and logarithm
functions, 0 and 0, defined for nonnegative real numbers x and X by

Ox if 0 <x <1¢(x) -- e ( -1  otherwise;

and
O() X if < X <l,

ik(X) = {(logX) + 1 otherwise.

The level-index system represents the real X as a sign, a level, which is the
integer portion of O(fX I), and an index, which is a fixed-point approximation
to the noninteger portion of O(IXI).

The symmetric level-index system uses negative index values to denote the
reciprocals of values in the level-index system. Its analogs of the generalized
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exponential and logarithm functions, 4) and T, are defined for real numbers
x and positive real numbers X in terms of the previously-defined functions
€ and 0 by

< f(X 1/0(1- x) if x<O0,

1 0(1 + x) otherwise;

and
(.X)= { 1- 0(1/X) ifO<X < 1,

SO(X) - 1 otherwise.

The symmetric level-index system represents values as the level-index system
represents them, with the extension that the level values are signed integers.

Olver and Clenshaw define methods for performing addition and sub-
traction in the level-index system by induction on the levels of the values
being combined; the induction steps typically involve evaluating powers of
e to previously-determined exponents. Multiplication and division can be
performed similarly, since taking logarithms or exponentials is equivalent to
decrementing or incrementing levels. They have also developed methods for
preforming arithmetic operations in the symmetric level-index system. They
acknowledge that their arithmetic operations can be expected to be signifi-
cantly slower than the analogous operations in floating-point.

The arithmetic on the symmetric level-index system is closed if the in-
dex portions of the values represented are stored in, say, fixed-point binary
with a limited number of bits, and if the level portions cau be reasonably
large. The reason for this closure is that for large values of X the levels of
the values O(X), O(X + X) and O(X- X) are equal and their indexes are
indistinguishable to the fixed number of bits available to store them. Olver
and Clenshaw show, for example, that for 32-bit fixed-point binary indexes

this indistinguishability trises for levels hss than 6.

For a fixed number of Nits, the level-index system is least precise for real
numbers 0 , X < 1. The systermu becounors more precise, temporarily, as X

increases, but its precision eventually decays to the point that X and X2 are
indistinguishable.

The precision of the level-index system with 32-bit indexes compares to
IEEE floating-point arithmetic as follows: For IEEE single-precision values,
the level-index system is up to 32 times more precise for I < X < 21, is
of roughly the same precision for 211 < X < 218, and is up to 37 times less
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precise for 21" < X < 2127. For IEEE double-precision values, the level-
index system is up to 256 times more precise for 1 < X < 2 44 , is of roughly
the same precision for 2" < X < 27, and is up to 68 times less precise for
270 <X < 21023. Beyond these ranges, overflow occurs for the IEEE floating-
point values. These precision comparisons are for extreme cases, though, not
for typical ones.

Our impression is that this representation gains its advantage of freedom
from overflow and underflow with unacceptable losses in computation speed
and increased complexity. The variable-length-exponent representation by
Iri and Matsui described in Section 5.4 gains comparable immunity from
overflow and underflow with much simpler operations. Also, as Demmel
notes [Dem87, any representation that allows the precision of stored values
to vary makes it more difficult to determine the precision of final results,
but a register storing the largest exponent-length used would have a simple
interpretation making such a determination possible; a register storing the
largest or smallest level-value used would be much less useful, since possible
values with a given level have such a great range.

The representation is not appropriate as a means for representing the
endpoints of intervals, and it does not facilitate parallel computation.

5.7 Finite-Segment p-adic Representations

Finite-segment p-adic arithmetic, for a prime p, is a method of doing exact
rational arithmetic on values that can each be stored in a fixed amount of
computer memory. Further, the operations in this arithmetic are similar to
those for ordinary floating-point arithmetic carried out in base p.

For the moment, fix p and a positive integer r and let m = p7 . Let N be
the largest integer such that 2N 2 + 1 < m. Define subsets of the rationals by

Q= {a/b:a, bE Z,gcd(a,b)= 1 and gcd(b,p) = 1}

and
FN= {a/b E Q:j al N, IbI < N}.

If a/b and cid are rationals in Q, call them equivalent if ad bdmodm.
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It is then true that for N as above, each equivalence class in Q contains at
most one member of FN.

Identify the members of the ring Z/mZ with the integers 0 to m - 1,
and identify the operations on this ring with the corresponding operations
modulo m. For any integer b such that gcd(b,p) - 1, let b- 1 be the unique
integer k from 1 to m - 1 such that bk =1 mod m; such an integer always
exists because gcd(b, p) = 1. Define a mapping 0 from Q to Z/mZ by letting
0 map the rational a/b to the modulo-m product of a and b- 1 . This mapping
is a ring homomorphism.

The process of using finite-segment p-adic representations works as fol-
lows: Start with rational numbers for which some computation is desired,
and choose p so that all these rationals are in Q. Choose r sufficiently large
so that for m and N as above, all these rationals are in FN. Apply the map-
ping 0 to the rationals, and perform all the desired sums, products and so
on, as the corresponding operations in Z/mZ using finite Hensel codes, which
are finite segments of real numbers' representations as p-adic values. (Finite
Hensel codes, algorithms defining the mapping 0 and its inverse, and algo-
ithms defining the arithmetic operations in Z/mZ in terms of these codes
dre described completely in [GK84]; the codes, the operations on them, and
the advantages and disadvantages of using them are described informally in
the following paragraphs.) If the result of these computations is the image
under 0 of a member of Fv, this rational is the exact result of the desired
computation on the original rational numbers.

The finite Hensel codes for particular values of p and r as above are like
ordinary base-p floating-point values with r-digit mantissas. The arithmetic
operatioris on these finite Hensel codes are similar to those of ordinary base-
'2 floating-point arithmetic, with the exception that carries are carried to
the right rather than the left; this corresponds to the condition that two
reals are close in the p-adic metric if and only if their difference is a rational
whose reduced form has a numerator divisible by a large power of p. As
a consequetice, the successive digits in a finite Hensel code result can be
calculated from left to right, one at a time, with no possibility that later
calculations will change these digits.

Unfortunately, FN is iot closed under the operations of addition, subtrac-
tion, multiplication and division. This gives rise to the phenomenon called
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pseudo-overflow, which makes it impossible to associate a unique member of
FN with the result of a finite-segment p-adic calculation. In such a situation,
all that is known about the desired exact rational answer is its equivalence
class in Q. If machine integers of a fixed size are used to represent the powers
of p in the finite Hensel codes, ordinary integer overflow is also possible.

If pseudo-overflow occurs, it is possible to simply repeat the calculations
with a larger value of r. Since the computations of earlier digits are never
changed by the computations of later ones, no results already computed
have to be recomputed. Increasing r until pseudo-overflow does not occur is
thus analogous to demanding more digits or more continued-fraction partial
quotients until a desired degree of accuracy is obtained. One could also do
similar calculations with another prime p' and another power s. Since powers
of p and p' are relatively prime, the separate calculations with p and r and
with p' and s are accurate for all the order-N' Farey fractions for any N' such
that 2(N')2 + 1 < pr . (p')-. The two calculations together are more likely to
result in pairs of Hensel codes that have a unique interpretation.

Finite-segment p-adic arithmetic provides an efficient way of performing
exact rational arithmetic when pseudo-overflow does not occur. It also gives
an efficient way of representing rationals, so that for reasonably small values
of p and r the family of representable rationals includes most rationals that
are likely to arise in computations.

Finite-segment p-adic arithmetic has the major defect, though, that it
does not provide a natural means for discarding information when pseudo-
overflow occurs. The p-adic metric is drastically different from the normal
one, so each rational in Q has both rationals very close to it and rationals
very far away from it in its equivalence class.

This representation is not appropriate as a means for representing the
endpoints of intervals, and does not facilitate parallel computation.
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Chapter 6

Constructive Reals

Several of the representation systems that we discussed in our interim re-
port [ORA88] were based on the constructive reals. This chapter describes
our work in this area. The chapter begins with a general definition of the
constructive reals and brief comments on their properties. It describes ba-
sic advantages and disadvantages of constructive-real arithmetic, and lists
implementations of this arithmetic, including implementations based on con-
tinued fractions and convergent sequences of rationals. The chapter then
presents the results of our work with continued fractions and gives more
information on Boehm's implementation of constructive-real arithmetic, an
implementation based on convergent sequences of rationals.

6.1 Definitions and Basic Properties

A constructive, or rccursive, real is a real number for which there exists a finite
algorithm capable of generating arbitrarily-accurate rational approximations
to this real. We will follow Boehm [Boe87] in calling these reals constructive,
though they have been called rccursivc by recursion theorists [Rog67]. The
constructive reals include all rational numbers, all algebraic numbers, and an
infinite number of transcendental numbers, including e and ir. Intuitively,
every real number for which a method exists for computing that number
arbitrarily accurately is a constructive real, so it the ideal inputs to ideal
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computer calculations were known arbitrarily accurately then all the numbers
arising in these calculations would be constructive reals.

There do not exist valid general algorithms for deciding whether two
constructive reals are equal or whether one is larger than the other, or for
deciding whether a constructive real is 0 or a rational [Rog67]. Ordinary
floating-point arithmetic does "better" in being able to decide equality and
order, and in being able to determine that a number is 0, only because it
represents only a finite number of reals. If two constructive reals are con-
sidered equivalent if they are closer together than a user-supplied tolerance,
then equality, order, and being different from 0 are all decidable for the
constructive reals.

Systems implementing constructive-real arithmetic take algorithms com-
puting particular constructive reals and create, under user control, algorithms
for computing sums, differences, products, quotients, logarithms, exponen-
tials, etc., of these reals. The user inputs reals that the systems take to be
exact, and they execute the algorithms they create for producing sums, prod-
ucts, quotients, etc., to produce numerical results to user-specified degrees
of precision. In actual implementations, of course, the amount of precision
obtainable is limited by available computer memory and the time needed to
compute the results. In Aberth's [Abe88] implementation of an arithmetic
that allows the user to set the precision, for example, at most roughly 120
decimal digits of precision are available.

The constructive reals are strongly related to the notion of on-demand or
data-driven precision. In a system providing on-demand precision, the user
specifies a tolerance for relative error in the final results of a calculation. The
system then carries out the intermediate calculations to whatever degree of
precision is necessary to give final results that are guaranteed to be as precise
as the user has specified. The degree of precision necessary for intermediate
results can vary with the numbers that actually arise; in evaluating 1/(1 -x),
for example, x must be evaluated more precisely if it is approximately equal
to 1.
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6.2 Advantages and Disadvantages

The basic advantage of implementations of constructive-real arithmetic is
that they produce results that are practically arbitrarily accurate. These
results do not depend on anomalies of a particular form of finite arithmetic,
such as floating-point, and are never misleading because information that
later turned out to be significant was thrown away.

Systems providing "on-demand" precision can be useful even if there are
upper limits on the amount of precision the user can specify for final results
or that the system can take for intermediate ones. Such systems do not
perform constructive-real arithmetic, but can be useful in situations where
the amount of precision needed is variable but typically low; they can save
computation time by not calculating any intermediate result more precisely
than they have to.

We noted in our interim report, though, that since constructive-real sys-
tems do not discard information the amounts of time and space they use
can easily become excessive. In situations where high precision is needed,
tlie systems can fail to provide this precision within the available space and
time. In more typical situations where high precision is not needed, the sys-
tems' memory-management overhead for dynamically making space available
for results can slow things down significantly [KL85]. More importantly, in
calculations with large numbers of intermediate results, particularly calcula-
tions involving loops, it can be impossible for these systems to store all the
algorithis they create for generating arbitrarily-accurate approximations to
these intermediate results.

In calculations involving loops, a constructive-real system can compute
intervals containing intermediate results to a high degree of accuracy, then re-
compute these intervals to a higher degree of accuracy if they do not give final
intervals suffliciently short to guarantee the user-specified degree of precision.
(G.f., Abrth [Abe88].) Such a process can be expected to be slow, though,
and can casily be unacceptable in situations requiring real-time results.

On the issue of pos sibly using constructive-real systems for real-time
applications, lHans-Juergen Boehm, one of the principal developers of the
constructive-real s vsteni described in Sections 6.3 and 6.5, advised us [Boe89]:
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My view is that none of this is presently suitable for real-time
applications. It is probably too slow at present, and too hard to
guarantee response time.

Boehm raises the critical point that if additional computation is done in a
data-dependent fashion to maintain a desired degree of precision, this intro-
duces a possibly unacceptable dependence of the response times on the input
data.

In our interim report, we planned to seek practical situations where only
a limited amount of precision is needed in results that can be taken as final,
even if they are used as inputs to further calculations, but where the precision
needed in intermediate results to obtain this final precision is unpredictable.
Finding the determinant of a large matrix to a moderate degree of precision
is an example, since the matrix can be singular or nearly singular. We specu-
lated that constructive-real systems might be useful in such situations, even
for real-time applications.

We have since learned, though, that having intermediate results be more
precise than initial inputs is generally only useful for avoiding the introduc-
tion of calculation error in computations with large numbers of intermediate
results. The determinant of a nearly-singular matrix shows the problem: Al-
though any matrix has an exact determinant, computing this determinant to
a high precision implicitly assumes that the inputs defining the matrix are
exact, an assumption that is usually not warranted. A computation with a
large number of intermediate results is exactly the sort of situation where a
constructive-real system can be expected to perform poorly.

Other situations that require unpredictable precision in their intermediate
results also require unpredictable precision in their inputs, so are unrealis-
tic for real-time applications. Techniques for representing constructive real
numbers and performing operations on them axe thus more likely to be use-
ful for real-time applications as ways of providing "on-demand" accuracy to
reduce the necessary amount of computation.
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6.3 Implementations

The systems doing constructive-real arithmetic considered in our interim
report included ones representing real numbers as lazily-evaluated lists of
redundant digits [Pix82] or of partial quotients [Jon84]. In lazy evaluation, a
potentially-infinite list is represented as an initial segment of that list together
with an algorithm capable of extending the list on demand [ASS85]. As in
Section 3.4, redundant digits avoid the impossibility, say, of not knowing
whether to output 2 or 3 as the third digit of an ordinary base-10 number
whose calculation begins 8.72999 . ... A list of partial quotients can give either
a number's standard continued fraction or one of its generalized continued
fractions. As we mentioned in Section 4.5, and will discuss in Subsection
6.4.2 below, generalized continued fractions give exactly the same sorts of
advantages that redundant digit-sets give.

Our interim report also considered an implementation of constructive-real
arithmetic by Boehm [Boe87] that represents a real x as a function f. from
the integers, where the integer input specifies the required precision, to the
rationals, where the rational returned approximates x to the required preci-
sion. For efficiency, this system represents rationals as appropriately-scaled
integers, uses interval arithmetic in some of its intermediate calculations, and
records the results of earlier computations so that when it is computing a
new approximation to a real it always has the most precise previously calcu-
lated approximation to that real available. We give additional information
on Boehm's system in Section 6.5.

Jones [Jon84] has iinpleniented a version of Gosper's algorithm in SASL
[Tur76], a functional programming language strongly and historically related
to the Caliban language used in the Clio prover [BMS89], the theorem prover
used by the Reals project. SASL treats every object as a function, so func-
tions can be passed as arguments to functions and returned as values of
functions. This makes it natural for implementing a version of Gosper's al-
gorithm that takes functions - i.e., infinite lists of partial quotients - as
arguments and returns them as values.

Boehm's system is implemented in Russell [BDD80], a strongly-typed
functional language. Like SASL, Russell treats functions as first-class objects
that can be passed as arguments to, and returned as values by, functions. It
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is also natural for implementing an arithmetic that treats real numbers as
functions - in this case, functions from integers specifying desired precisions
to integers specifying sufficiently-precise rational approximations.

In principle, the LCF representation, particularly with the extensions to
redundant bit-sets mentioned in Subsection 5.2.4, could be used in a system
of constructive-real arithmetic. Matula and Kornerup's primary interest in
this direction, though, seems to be in using LCF in "on-demand precision"
arithmetic systems that minimize necessary computation.

Chapter 8 lists references to iterated-interval arithmetic systems. These
also implement constructive-real arithmetic or "on-demand precision" ap-
proximations to it.

6.4 Continued Fraction Results

We implemented code for generating standard and optimal continued frac-
tions in both Caliban and C. We also implemented C code carrying out
Gosper's algorithm to take standard or generalized continued fractions as in-
puts and produce standard or approximately-optimal generalized continued
fractions as outputs.

6.4.1 Caliban Continued Fractions

Appendix H contains the Caliban program we implemented for finding the
standard and optimal continued fractions for rationals selected by user input.
The user executes this program in the Clio prover by simplifying the expres-
sion getcfrac n, where n is a positive integer less than 134217728, which is
the maximum value of one of Caliban's NUM's. (If the user wants the program
to terminate in reasonably short order, hb or she should use a much smaller
value of n.) The Clio prover simplifies the expression to a list containing all
the fractions i/n for n < i < 2n, given as numerator/denominator pairs, and
their standard and optimal continued fraction expansions.

Every operation used in this program is completely defined within Ap-
pendix H except for the arithmetic operations on NUNs. Definitions of the
natural numbers, the integers, the rationals, the usual arithmetic opera-
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tions on these numbers, the order and equality relations on these numbers,
and the absolute-value function on these numbers, are contained in th' file
arith. def, which is included in Appendix H.

We were originally interested in uling Caliban to implement Gosper's
algorithm because we had already obtained Jones' [Jon84] implementation
of this algorithm in SASL. A language that treats functions as first-class
objects is also natural for constructive-real arithmetic. The process of sim-
plifying Caliban expressions is much slower than the process of executing C
code, though, and Caliban does not contain the convenient I/O statements
available in C, so we decided to use C rather than Caliban for our further
investigations into continued fractions and Gosper's algorithm.

We implemented a C program carrying out the same sorts of calculations
as those performed by the Caliban program in Appendix H, and in addition
suppressing output for fractions whose standard and optimal continued frac-
tion expansions are the same, computing convergents for both standard and
optimal continued fractions, and maintaining counts of the numbers of par-
tial quotients in both forms of continued fractions. This program led us to
observe some of the properties of continued fractions and their convergents
noted in Chapter 4, but we have not included it because we do not believe
it is of further interest.

6.4.2 Gosper's Algorithm

Sections 1 and 2 of Appendix I contain our C implementations of Gosper's
algorithm for standard and generalized continued fractions. These programs
only compute combinations of two specific infinite continued fractions, and
must be modified and recompiled to compute combinations of other continued
fractions. As they are given, the programs only compute combinations of
1 + v1 2, which has a particularly simple standard continued fraction expansion
that is also optimal, with itself:

I + V2 = [2,2,2,2,...1 : 2.414213562373095.

The parts of these programs that must be changed to compute combina-
tions of other continued fractions are very specific, though: The functions
x and y correspond to the inputs z and y of Gosper's algorithm. These
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functions take no arguments; the ith time x or y is called it returns the ith
partial quotient of x or y. When the programs x and y perform in this way,
the C code implementing Gosper's algorithm is similar to functional pro-
gramming language code that treats x and y as lazily-evaluated infinite lists.
The functions rx and ry take no arguments and return double-precision ap-
proximations to x and y, respectively; they are used for producing descriptive
output.

An easy way to have different calls to a C fPmction with no arguments
return different values is to have a static counter local to the function dis-
tinguish the calls. Section 3 of Appendix I contains such a function that
computes the standaLrd continued fraction for e, the base of the natural log-
arithms.

Both programs use double-precision values to store the entries of the
coefficient cube for two reasons:

1. Double-precision floating-point values, at least on most computers, can
exactly represent larger integers than integer values can; and

2. In IEEE arithmetic, the hardware maintains a status flag that records
whether the results of floating-point computations are exact or approx-
imate, making it possible to detect when coefficient-cube updates are
approximate. (Aberth [Abe88] seemed to not be aware of this pos-
sibility, but he was working on IBM machines on which it does not
exist.)

The programs take the partial quotients of the inputs and the output to
be in double-precision in order to be consistent with their handling of the

coefficient cube.

Both programs assume that their inputs are infinite continued fractions,
and make no attempt to handle inputs that can be exhausted. They could
presumably be rewritten easily to test for the IEEE +oo value as a partial
quotient and use it to mark the end of an input - c.f., the discussion of
treating finite continued fractions as having +oo as their final partial quotient
in Subsection 5.2.1. Instead, both programs ingest partial quotients of their
inputs and output partial quotients of their outputs for as long as their
coefficient-cube updates are exact.
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Both programs use floating-point arithmetic to decide whether output is
possible or from which of x or y to ingest another partial quotient; since
this arithmetic is approximate, their decisions can be incorrect, particularly
after enough terms have been ingested to make the distinctions between
the alternatives small. Neither program attempts to determine whether its
output should terminate, but this is appropriate since it is not generally
possible to determine whether a constructive real is rational.

T'he standard continued fraction program implements Matula and Ko-
rnerup's [KM88] version of Gosper's algorithm. In particular, it maintains a
decision cube to give the four extreme values z(1, 1), z(1,co), z(oo, 1) and
z(co, oo), and ingests a partial quotient from x if the integer parts of its
floating-point estimates of z(1, 1) and z(oo, 1) are not equal. If these two
integer parts are equal, it ingests a partial quotient from y if the integer
part of either of its estimates of z(1, co) or z(oo, oo) differs from the other
three integer parts. If all four integer parts are equal, it outputs the common
integer part as the next partial quotient of z.

The generalized continued fraction program does not use a decision cube
and does not attempt to minimize the computations it performs to decide
whether to produce output or how to ingest another partial quotient. It in-
gests a partial quotient from whichever of inputs x or y causes the greatest
variation in its directly-computed floating-point estimates of z(x,y) when
that input is replaced by the extreme values of -o, -1, 1, +oo and the other
input is held constant at one of these four extremes. Actually, it consid-
ers only nine cases instead of sixteen, because z(-oo,y) = z(+cc,y) and
z(x, -oo) = z(x, +cc). The program outputs a partial quotient of z when all
its estimates of z at the extremes of x and y are within 1/2 of each other; if
it outputs a partial quotient, it takes this partial quotient to be the integer
nearest the average of the largest and smallest of its estimates of z at these
extremes. The program assumes that the possible values of z are bounded
by its values at the extremes of x and y; we did not check this assumption
carefully, even for ipitializations of the coefficient cube that perfoiii the four
basic operations of arithmetic.

If it were not for possible error in the estimates of z, having the extreme
values of z be within 1 of each other would guarantee that there is an integer
that is within I of all the possible values of z. By using the tighter bound of
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1/2, and by taking the partial quotient it outputs to be the integer nearest
the average of the largest and smallest extreme values, the program chooses
a partial quotient that is within 1 of all the extremes of z even with error in
its estimates of these extremes. Further, this partial quotient will typically
be within 1/2 of all the possible values of z.

The program thus computes an approximation to an optimal continued
fraction. The program only assumes that its inputs are generalized continued
fractions; if it assumed its inputs were optimal, it could evaluate values of z
at the extremes ±0 and ±2 instead of ±oo and ±1.

Even though the inputs x and y are fixed, the user can compute many
different combinations of these inputs by varying the initial entries of the
coefficient cube. The following remarks are based on computations for x =

y = 1 + v of x-y, x y, x-y and x/y.

When the result is rational, as in x - y = 0 or x/y = 1, tbe standard
continued fraction program "hangs", falling victim to tle main "catch" in
Gosper's algorithm. It outputs no partial quotients at all. The generalized
continued fraction program produces the correct first partial quotients of 0
or 1, then produces no more partial quotients until it terminates because

of an inaccurate coefficient-cube update. After it outputs the first partial
quotient, giving a perfectly correct "approximation" to the final result, the
possible extreme values of z computed by the generalized continued fraction
program vary over larger and !arger extremes as the program ingests more
partial quotients from x and y. This is reasonable, since either +cx or -cc
as the next partial quotient would be correct.

For x - y = 3 + 2V2, the standard continued fraction program outputs
[5,1,4,1,4,1,4,...] while the general continued fraction program outputs
[6, -6, 6, -6,6, -6,.. .1. The general continued fraction program's output
converges, on a partial quotient per partial quotient basis, to its ideal value

more quickly than does the standard continued fraction program's output,
but otherwise their results are similar. At the point that floating-point ap-

proximations to the convergents of both outputs and to the ideal answer
become identical, the standard and generalized continued fractions contain
21 and 11 partial quotients, respectively; the standard continued fraction has

a pair of partial quotients 1 and 4 for every generalized continued fraction
partial quotient of 6 or -6. The outputs for x + y = 2 + 2V42 are similar.
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These results were contrary, at least in practical terms, to our expec-
tation that the more-uniform throughput possible for generalized continued
fractions would reduce the magnitudes of the coefficient-cube entries aris-
ing in the calculations. Coefficient-cube entries with similar magnitudes are
needed by the two programs to produce outputs with a given precision. In
the x. y = 3 + N/2 case, the largest magnitudes of the coefficient-cube entries
for the two programs at the times when floating-point approximations to the
convergents first equal floating-point approximations to the ideal answers are
identical. In particular, in both programs the coefficient-cube entries typi-
cally grow without bound as the programs ingest and output more and more
partial quotients.

The numbers of partial quotients the two programs must ingest to produce
outputs with a given precision are roughly equal. The generalized continued
fraction program must occasionally ingest a few more partial quotients be-
cause it must consider more possibilities in bounding the values of z.

It is noteworthy, though, that for both programs the partial quotients
converge to the best possible value representable in double-precision long
before the coefficient-cube entries become too large to represent exactly in
double-precision. This is presumably related to why the Matula and Fergu-
son [FM85] results described in Subsection 5.1.4 on using simulated mediant
rounding to find the inverses of Hilbert matrices are so much better than the
floating-point results for these same calculations, even though the simulation
uses exactly the same floating-point hardware.

6.5 Boehm's Constructive Reals

Boehm's [Boe871 constructive-real system comes in an arbitrary-precision
"desk calculator" that runs on Sun workstations. The calculator is able to
produce results whose precisions are limited only by available computer mem-
ory and user patience. The amount of patience it requires is very reasonable;
on a Sun 3/60, we uscd the calculator to compute ee to 1028 decimal places
in less than 149 seconds.

We originally planned to test the time and space requirements of Boehm's
system on a problem with a large number of intermediate results by finding
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the determinant of a large matrix, but we were unable to do so before we
were asked to finish Task 5. Such a calculation is difficult to do with the
calculator because the calculator only performs operations in response to
user input; it is not programmable. The following paragraphs summarize the
information we gathered showing how Boehm's system could be used for the
sort of problem we intended to test it on, and give recent results that Boehm
gave us on the system's speed. We have already noted Boehm's opinion on
the underlying issue of whether constructive-real representations might be
useful for real-time command and control applications.

Boehm and Vernon Lee have developed a matrix-arithmetic package writ-
ten in Russell that can be used with the constructive-real package. It does
not include taking determinants, but does include a Gaussian elimination
routine that could be used as an example of a problem of similar complexity.
In addition, recent versions of the Russell compiler include source for versions
of the constructive-real package that can be called from C code.

Boehm gave timing results for problems requiring on the order of 100 in-
termediate results in [Boe87]. For example, on a Sun 3/260 with a Motorolla
68881 floating-point coprocessor, with sufficient heap space already allocated
in computer memory, the constructive-real package took about 183 seconds
to compute 100! by taking the natural logarithm of each of the numbers from
1 to 100, adding these logarithms, and finding the exponential of the result.
Current speed numbers for the package [Boe89] are about 20% better than
the results reported in [Boe87] because of incremental improvements to the
package and the Russell compiler.

Boehm seems to have gotten a factor of 10 speed improvement with newer
implementations of the package based on iterated interval arithmetic, but
these implementations are not yet ready to be distributed [Boe89]. We give
brief comments about iterated interval arithmetic in Chapter 8.
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Chapter 7

Conclusions and Questions

This chapter summarizes our conclusions and lists possible questions for fu-
ture research. The conclusions are primarily addressed to Task 5's Air Force
sponsors.

7.1 Conclusions

Although the absolute bounds on error given by interval analysis are de-
sirable, the bounds given by simply replacing scalar arithmetic operations
with corresponding interval ones are so overly conservative that they usu-
ally do not correctly show the dependence of computed outputs on errors
in inputs and intermediate calculations. Matijasevich [Mat85] has suggested
a technique for efficiently computing partial derivatives that might lead to
a way of limiting this problem, but his technique does not yet adequately
handle programs with loops. Simply replacing scalar arithmetic operations
with corresponding interval ones also does not give a useful extension of the
Real's project's notion of asymptotic correctness. More sophisticated inter-
val algorithms can produce surprisingly perfect results, though, and should
be investigated for their possible command and control applications.

The trade-offs involved in making the asymptotic model more and more
realistic are difficult to evaluate since the time, space and circuit-complexity
costs of increasing the precision of floating-point arithmetic are high. How-
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ever, the asymptotic model is presumably reasonably accurate, since these
trade-offs were implicitly considered in designing recent forms of floating-
point arithmetic. Adherence to the IEEE floating-point standard seems to
force some operations, particularly division, to be performed more slowly,
and IEEE arithmetic is slightly less precise than VAX arithmetic, for double-
precision values, because it allocates more bits to the exponent. Versions of
floating-point arithmetic with redundant digit sets facilitate parallel process-
ing by supporting on-line arithmetic.

There are alternative representation systems in the engineering literature
that are good for situations involving rational numbers and/or highly parallel
computations. Command and control applications should be examined for
the presence of such situations to identify cases where these representation
systems might be useful. There is also one alternative representation sys-
tem, the variable-length-exponent version of floating-point by Iri and Matsui
[M181], that we believe is generally preferable to the standard floating-point
representations for command and control applications.

Approximate rational arithmetic provides a means for capturing many of
the advantages of exact rational arithmetic without incurring unacceptable
time and space costs. Mediant rounding, with its bias towards simplicity,
can greatly increase the accuracy of computations on numbers whose ideal
values are rational. Representations based on continued fractions, partic-
ularly redundant generalized continued fractions, treat exact rational and
approximate real computations uniformly, and facilitate parallel processing
by supporting arithmetic operations based on Gosper's algorithm that can
be carried out on-line and largely in parallel.

The most mathematically interesting representation systems in the litera-
ture are the extended floating-slash [MK85] and binary lexicographic contin-
ued fraction (LCF) [KM88] representations by Matula and Kornerup. These
systems implement approximate rational arithmetic, and experimental re-
sults indicate that floating-slash is much more accurate than floating-point
for computations on quantities whose ideal values are rational and is not
significantly worse than floating-point on other computations. In addition,
the extended floating-slash representation has the same ability as floating-
point to conveniently represent numbers of widely varying magnitudes. The
LCF representation makes it easy to decide which of two numbers is larger,
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and also supports bitwise, on-line, variable-accuracy arithmetic. The LCF
representation does not have floating-point's ability to conveniently repre-
sent numbers of widely varying magnitudes, but a possible extension of this
representation might.

Approximate rational arithmetic is probably most useful in command and
control applications for knowledge-based systems in which it is critical to rec-
ognize simple rationals. It might also be useful in combinatorial optimization
problems involving integer quantities. In situations where it might be use-
ful, simulating mediant rounding in floating-point might suffice to capture
most of approximate rational arithmetic's advantages, and would do so with
standard hardware.

The alternative representation system in the literature that we believe
would be most useful for typical command and control applications is the
variable-length-exponent representation by Iri and Matsui [MI81]. This sys-
tem is capable of representing quantities of such widely-varying magnitudes
that it practically eliminates overflow and underflow, and it is more accurate
than floating-point for typical, moderately-sized numbers. We believe that
this system should be implemented, as Demmel [Dem87] suggests, with hard-
ware recording the maximum length of an exponent that has arisen in cal-
culations. We believe Iri and Matsui's system, with the extension suggested
by Demming, is preferable to versions of floating-point that use comparable
numbers of bits.

Other alternatives in the engineering literature, particularly Hwang and
Chang's [HC78], combine the advantages of floating-point and approximate-
rational representations or give other methods of avoiding overflow and un-
derflow. We do not believe these representations would be as effective for
these purposes as the floating-slash and variable-length-exponent represen-
tations.

Representations based on the constructive reals, in which quantities ca'.
be calculated to a virtually-arbitrary user-set precision, are unlikely to be use-
ful for real-time command and control applications. Implementation!' using
these representations tend to be slow, and they pay for predictable preci-
sion with unpredictable response times. Further, implementations based on
such representations typically assume that inputs are exact, which is unreal-
istic for command and control applications. However, these representations
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are very useful for interactive analysis, and they suggest the desirability of
representations that support variable-precision arithmetic.

We propose several possible representation systems based on ideas from
Iri, Matsui, Matula, Kornerup and Aberth in Section 7.2. These representa-
tion systems raise questions about continued fractions that we give in Section
7.3, and the continued fraction questions raise an open mathematical ques-
tion about possible representations of integers that we give in Section 7.4.

7.2 Variable-Length-Exponents

This section lists several possible variants of Iri and Matsui's (M181] variable-
length-exponent representation. All these variants are based on using self-
delimiting exponents, as in Matula and Kornerup's LCF encoding of positive
integers [MK83], rather than a fixed-length field giving exponent lengths.
Some of these variants also perform approximate rational arithmetic, support
variable-precision arithmetic, or facilitate parallel processing.

Our primary interest in Iri and Matsui's variable-length-exponent rep-
resentation is not in its immunity from overflow and underfiow, but in its
efficient use of bits. It first takes bits for the exponent, which gives the num-
ber's general magnitude, and leaves any remaining bits for the mantissa. We
will initially assume that the exponent is for base 2, as it is in IM181], and we
will ignore negative exponents - it would be easy enough to code numbers
having negative exponents by giving each number two sign bits, one for the
number and another for its exponent. A number's exponent gives the most
significant information about the number, so it is appropriate that as many
as necessary of whatever bits are available for coding the number be used to
code its exponent.

If the exponents in quantities that arise most often are small, reserving 6
bits to give the length of the exponent, as Iri and Matsui do in [MI81], wastes
bits. In the LCF encoding of positive integers, for example, the integers 1, 2,
3 and 4 are coded by the strings 0, 100, 101 and 11000, respectively. The LCF
encoding only has 6 "wasted" bits - the leading l's that give the length of
the integer's binary value after that value's leading 1 - for integers greater
than 63. Floating-point numbers roughly as large as 2" s 1019 are rare, so
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using an LCF encoding of the exponent would typically leave more bits free
to be in the mantissa.

Further, the coded value of an exponent could be shifted by a constant
to minimize the typical lengths of exponents' LCF encodings. If statistical
studies indicated that the binary exponent occuring most often in typical
calculations was 3, for example, a number's exponent could be taken to be
an LCF exponent value plus 2.

Also, with self-delimiting exponents the lengths of the bit strings used
to represent numbers need not be fixed. The initial bits of one of these
strings could define a self-delimited exponent and any remaining bits could
then be the mantissa. The precision to which results were calculated could
then be controlled by a bit- or byte-count number-length value maintained
in hardware and subject to program control; Aberth's [Abe88] PRECISION
variable serves a similar purpose. Special "exponent" values, such as number
fields containing only l's, could be used to to code infinite and not-a-number
values for each precision, as well as +0.

As we noted, Iri and Matsui [MI81] only propose performing arithmetic
as if results were first calculated exactly and then rounded to the nearest
representable values. There seems to be no reason, though, why their repre-
sentation could not be used with each of the four rounding modes possible
in IEEE floating-point arithmetic [IEE85]. We would do so, and would also
adopt Dernmel's [Dem87] suggestion of maintaining a hardware register to
record the largest exponent-length that has arisen in calculations for the
current precision.

We have so far assumed that exponents are for the base 2 and mantissas
are ordinary base-2 values. It would also be possible, though, to use continued
fractions as mantissas and use LCF encodings of these mantissas. That
would make the system able to exactly represent a great many rationals,
with the number of exactly-representable rationals determined by the current
precision. (Every rational has a finite continued fraction, and a rational is
exactly representable for a given precision if this precision is large enough
to code that continued fraction.) This would also presumably simplify the
hardware needed to perform arithmetical operations on quantities of varying
precisions (i.e., bit lengths) and increase the numbers of operations that could
be done in parallel. If this were done, some base other than 2 might be better
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for the exponent, though our initial guess is that it would not be. If this were
done, it might also be useful to allow mediant rounding as a rounding option.
It might also be useful to allow some sort of redundant-binary LCF-like
encoding of the mantissas, as suggested by Matula and Kornerup [KM88].

This last proposal is essentially the same as Matula and Kornerup's
[KM88] LCF proposal, including its possible extension to redundantly-coded
binary values. It adds a self-delimited initial exponent, an explicit mention
of precision bounds, a largest-exponent-length register, and more possible
roundings.

Finally, it might be useful to code mantissas as binary representations
of generalized continued fractions rather than as redundant-binary repre-
sentations of standard continued fractions. The issue is whether the more
rapid convergence of optimal or nearly-optimal generalized continued frac-
tions, with their more uniform throughput for Gosper's algorithm, is worth
the cost of the bits needed to give the signs of the partial quotients. This
issue is behind some of the questions about continued fractions in Section
7.3.

The main potential difficulties we see with these possible representations
are with operation speed and the size and complexity of the necessary hard-
ware. These issues also arise in the questions in Section 7.3, and are behind
the theoretical question in Section 7.4.

7.3 Continued Fraction Questions

This section lists questions about using generalized continued fractions and
about using Gosper's algorithm to do arithmetic on them.

Would it be practical to use Gosper's algorithm, and initialize the coeffi-
cient cube's entries appropriately, to get the effect of multiplying standard or
generalized continued fractions by powers of a fixed base? If not, it would not
be practical to give numbers as exponents and continued-fraction mantissas.

What, if any, relationship is there between using redundant-binary arith-
metic to code the LCF results of having Gosper's algorithm output standard
continued fractions, as Matula and Kornerup [KM88] suggest, and using
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signed partial quotients to code the results of having Gosper's algorithm out-
put generalized continued fractions? Would generalized continued fractions
give outputs that are easier for hardware to interpret?

Which values of z in Gosper's algorithm must be evaluated for generalized
continued fraction inputs fractions in order to definitely bound all possible
values of z? Is it possible to maintain a generalized "decision cube" to give
these bounds?

How rapidly can the entries of the coefficient cube grow for redundant-
binary output, either for standard or generalized continued fractions?

7.4 Integer Representations

Our study of Gosper's algorithm, particularly the possibility suggested by
Matula and Kornerup [KM88] that a redundant-binary encoding of the al-
gorithm's outputs might improve its throughput, led us to wonder whether
there might exist an encoding of the partial quotients of standard or general-
ized continued fractions that would allow Gosper's algorithm to produce an
indefinite number of partial quotients even if the magnitudes of its coefficient-
cube entries were bounded. Thinking about a special case of this, the case
in which only one partial quotient is ingested from each of the two inputs,
led us to pose the following question about possible representations of the
integers:

Informally, the question is whether there exists a (presumably redundant)
encoding of the integers that makes it possible for finite-state machines to
compute sums and products and also to decide order. Let A* be the set of
all finite strings of elements of an alphabet A. To ask the question about
integer encodings precisely, do there exist the following:

* A finite alphabet A;

e A recursive function f from A* onto the integers;

* Two restricted Turing machines M1 and M2, both with two one-way
input tapes and one one-way output tape, which compute the functions
gi, g : A* x A* A* respectively; and
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* A restricted Turing machine M 3 with two one-way input tapes that
always halts when started with elements of A* on its input tapes and
always halts in an accepting or rejecting state;

having the properties that for all x, y E A*,

1. f(g 1(x,y)) = f(x) + f(y),

2. f(g92 (x, y)) = f(x). f(y), and

3. M 3 accepts (x,y) if and only if f(x) <_ f(y)?

Note that the condition required to give an affirmative answer to this
question is very strong. A single machine must be able to multiply arbitrarily
large integers if they are coded appropriately. It does not suffice to have a
single machine unit that can be composed into arrays such that any pair of
integers can be multiplied by one of these arrays, as is done in [Atr65.

When we first posed a variant of this question, we presumed that the
answer was "no", and expected to go on to consider how rapidly the number
of states the coefficient-cube entries can assume increases as the total number
of partial quotients Gosper's algorithm ingests and outputs increases. We
learned, though, that this seemingly simple question about encoding the
integers is more subtle than we had imagined, and is still open. Professors
Hopcroft, Hartmanis and Kozen of Cornell University advised us that they
knew of no work that answered this question, and in a recent paper Regan
[Reg88] mentioned a ring-theoretic generalization of the question as being
open.

For the remainder of this section, we will take "finitely computable" to
mean "computable (for a function) or decidable (for a relation) via a fixed
recursive encoding by a restricted Turing machine with one-way input and
output tapes". With this terminology, the question we have asked is, "Is
there a possibly-redundant recursive encoding of the integers such that ad-
dition, multiplication and order are all simultaneously finitely computable?"
Replacing "order" by "equality" gives a simple weakening of the desired con-
ditions - i.e., M 3 accepts (x, y) if and only if f(x) = f(y). We do not require
that the encoding f itself be finitely computable, but only that it be recur-
sive, so we do not impose any time or space restraints on the computations
needed, say, to convert strings in A* to ordinary signed base-10 numbers.
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The answer to our question is "yes" if it is weakened:

" A signed variant of unary notation with a symbol for 0, where the
positive integer n is represented by n consecutive l's, makes addition
and order finitely computable.

" A signed variant of prime-power notation with a symbol for 0, where
the positive integer n is represented by a string of positive integers in
unary that give the exponents of n's factorization into primes, makes
multiplication and equality finitely computable. For example, if com-
mas separate the exponents and # marks the end of the number, since
the consecutive primes are 2, 3, 5, 7, ... the encoding of 84 = 22 - 3. 7
is 11,1,0,1#.

" If prefix-Polish expressions in ordinary base-10 notation are taken to
be encodings of the numbers obtained by evaluating these expressions,
then addition and multiplication are finitely computable. If + avd *
denote addition and multiplication respectively, and if commas separate
different expressions, the product of 857 and 973 can be "encoded" as
*857,973.

Compositions of finitely-computable functions need not be finitely com-
putable, and the answer to our question is more dependent on exactly how
it is formulated than one might expect. For example, even though letters
from a finite alphabet on two separate input tapes can be coded by a letter
from a larger alphabet on a single input tape, our question cannot n, ecessarily
be adapted to machines with a single input tape. The question, "Are there
twice as many x's on tape I as there are on tape 2? is easily answerable by
a restricted Turing machine with two separate, independently-controllable
one-way input tapes, but is not answerable by such a machine if the two
input tapes are both coded onto a single one-way tape.

With a redundant system, a steady output stream of digits also does not
necessarily mean a steady output stream of useful information: lillil =

0000001. Still, with generalized continued fractions and Gosper's algorithm
it is possible to steadily output partial quotients that all give significant
information about the true value of the output, so this suggests that an
encoding of the integers making addition, multiplication and order all finitely
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computable might have the additional property that each letter of a word
imposes significant bounds on the integer coded by that word.

We still expect the answer to our question to be "no", but if there is
an encoding of the integers that makes the answer "yes", and if with this
encoding the necessary compositions of finitely-computable functions needed
to carry out Gosper's algorithm are themselves finitely computable, then
there exists a representation system based on continued fractions for which
a fixed hardware unit can perform operations on arbitrarily-precise inputs
and produce outputs, possibly after an initial delay, as rapidly as it reads its
inputs. Such a representation system would thus limit hardware complexity,
support use of variable precision, and facilitate parallel computation.
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Chapter 8

Task Notes

This chapter ties up loose ends from Task 5 and our interim report [ORA88].
The chapter notes efforts planned in our interim report that we changed or
were unable to carry out, and corrects two errors in our interim report.

8.1 Interval Probabilities

xVe no e d in our interim report that it would sometimes be very useful if one
O"Ild azcign probabilities to the distribution of ideal results in the intervals
'd'i,1 by interval operations. It might be much more valuable to know
at t:icre is a 99.73% chance that a value is between 7.876 and 7.877, for

f'Ya'liple, than to know with certainty that this value is between 4.5 and 9.3.
We did rot find anything useful when we investigated this possibility.

A:. w, nioted in our interim report, if one starts with uniform distributions
and compuites the probability distribution of the results of interval operations
acc,irately, the amount of information that must be stored for an interval can
become arbitrarily large. Further, most of this information is useless. We
thus looked into using approximate probability distributions that can be
parameterized simply. The only well-known distribution besides the uniform
distribution tlat is parameterized simply and applies to values that range
over an interval is tie beta distribution, and it does not describe the results
of interval operations in any natural way.
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8.2 "Briggsian" Algorithms

We were unable to perform the work we planned to do on quantitative results
for interval versions of "Briggsian" algorithms, which perform the algebraic
operations on some pocket calculators. We were unable to find literature
on these algorithms. The name we were given for them might have been
nonstandard, and significant information about them might be proprietary.

8.3 Theoretical Floating-Point Speed Limits

As we noted in Chapter 3, we were unable to find conclusive answers to
questions about the theoretical speed limits of floating-point arithmetic car-
ried out both consistently with the IEEE standard and otherwise, though
what we did find suggests that adherence to the IEEE standard theoretically
causes a significant loss in speed for division and taking square roots.

We were also unable to find the extent to which parts of individual
floating-point operations could be done in parallel or how effectively many
different floating-point operations could be done in parallel, with the excep-
tion of the information on pipelined floating-point arithmetic with highly
redundant mantissas given in Chapter 3. We found some information on
how these questions are addressed in Cray supercomputers [HX85], but were
unable to study it or other literature on parallel computing thoroughly.

8.4 Alternative Representations

We ran out of time on Task 5 before we learned enough about some of the
alternative representation systems considered in the literature, particularly
these two, to make meaningful evaluations of them.

Iterated interval arithmetic is apparently a technique for computing and
recomputing interval bounds on desired quantities until these bounds be-
come short enough to achieve a desired precision. This arithmetic is thus a
particular form of constructive-real arithmetic. We were unable to critically
examine the time and space costs of operations using this technique.
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Aberth [Abe88] describes one method of producing progressively shorter
interval bounds with a version of range arithmetic in which the range is
limited to one digit in the position of the mantissa's least significant digit
and the mantissa loses digits if the range becomes larger. His system simply
repeats all calculations to a higher precision - a larger number of mantissa
digits - until the final results contain a desired number of accurate digits.

The ACRITH package from IBM [BRR85,KM83b] seems to use a more
sophisticated algorithm for refining interval approximations. It apparently
represents a real as an initial value plus a potentially infinite series of pro-
gressively smaller correction terms. It apparently produces interval bounds
on results by truncating these series of correction terms, and computes ap-
propriate correction terms for the results of operations by forming symbolic
products of series and evaluating the initial terms of these series to obtain
bounds consistent with the current level of precision. We gathered these
impressions of the ACRITH package from Kahan's [KL851 critique of it, a
critique that emphasized its sometimes excessive uses of time and space.

The variable-length p-adic representation by Horspool and Hehner [HH781
might be a significant extension of the finite p-adic representation described
in Section 5.7, but we suspect that it also suffers from the defect of not
providing a natural means for discarding information.

8.5 Experiments on Boehm's Package

As we noted in Chapter 6, we were unable to test the time and memory-use
performances of Boehm's constructive-real package in finding the determi-
nant of a large matrix. As we also noted in Chapter 6, however, we did
identify means for doing so, and did obtain an expert opinion from Boehm
on the issue the determinant experiment was intended to address. We also
obtained the Russell matrix arithmetic package and one of the new versions
of the Russell compiler that contains C-callable versions of the constructive-
real arithmetic routines, so we can perform the determinant experiment in
the future if asked to do so.
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8.6 Aircraft Interception Example

We intended to examine code computing an interception path for aircraft
[VS86] for situations where highly-parallel computation or intermediate re-
sults computed by a constructive-real package might be useful. We aban-
doned work on this example because we could not figure out the physics
assumed by the algorithm, and because the Reals project was asked to look
at a hostile booster trajectory estimation algorithm [App87] instead.

We found one potential situation where on-demand precision, which is
related to constructive-real arithmetic, might be useful in the small fragment
of this code that we examined. In this situation, the code computes directions
by dividing vectors by their norms, even though these norms can be 0 or near
0. The resulting directions are actually not significant is this case, though,
so we considered the situation a programming error rather than a potential
application for constructive-real arithmetic.

8.7 Errata

Chapter 3 of our interim report contains two technical errors. First, the real
number whose standard continued fraction is [1, 1, 1,...] is not V2, but the
golden ratio (1 + v5)/2. The correct standard continued fraction for V_2 is
[1,2,2,...].

Our interim report also makes the statement, "This property [the best
rational approximation property] has as a consequence that finite initial por-
tions of numbers' continued fraction representations produce, on average,
better approximations to the numbers per amount of information stored than
do any other rational representations, including ordinary base-b notation."
This statement was based on a misunderstanding of the "best rational ap-
proximation" property of continued fractions. The results by Matula and
Kornerup [KM85] on the gap sizes between consecutive LCF values, given
in Subsection 5.2.2, can be construed as saying that the representation effi-
ciency of the LCF encoding of continued fractions is asymptotically the same
as that of the ordinary binary fixed-point representation.
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Appendix A

IEEE Interval Arithmetic

This appendix describes a particular version of interval arithmetic that can be
implemented on any machine meeting the IEEE standard for binary floating-
point arithmetic [IEE85]. Appendix B gives an implementation of this arith-
metic for Sun computers. The "arithmetic" includes operations such as in-
terval intersection that do not correspond to operations on real numbers but
are often used in interval algorithms, as in the Interval Newton's Method
algorithm implemented by code in Appendix E.

A.1 Extended Real-Number Arithmetic

Define the set R' by R' = (R \ {0}) U {+0, -0, +o,-oo}, where +0, -0,
+oo and -oo are new symbols. The values +0 and -0 behave as positive and
negative infinitesimals, respectively, and the values +oo and -oo behave as
positive and negative infinity. These new values correspond to possible val-
ues in IEEE floating-point arithmetic, which is described in this appendix's
Section 3. Extend the usual order < on R to a similar order <' on R' by
saying that for every positive real x, -oo <' -x <' -0 <' +0 <' x <' +00.

Define the set R" by R" = R' U {NaN, +NaN, -NaN}. The NaN value
corresponds to the "not a number" value used in IEEE floating-point arith-
metic as the result of invalid, completely indeterminate operations. The
+NaN and -NaN values correspond to values that are know only to be pos-
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itive or negative, respectively. They do not correspond to values in IEEE
arithmetic, but will be used in this appendix's Section 4 to define operations
on intervals.

Extend the operations in {+,-, ., on R to R" consistently with the
theory of limits. In particular,

-(00) = TOO
1/(±0) = ±o

1/(±o0) = ±0
(±oo) + (o:Fo) = NaN
(+oo) - (+oo) = NaN

+0.+oo = +NaN
+0-oo = -NaN
-0-+oo = -NaN
-0-oo = +NaN
±0/+0 = ±NaN
±0/-0 = :FNaN

±oo/+ oo = ±NaN
±oo/-oo = =:NaN

Let any operation with NaN as one of its arguments have NaN as its result.
Let an operation with +NaN or -NaN as one of its arguments have the
result consistent with only that argument's sign being known. In particular,
-(:NaN) = TNaN, +NaN + +NaN = +NaN, and +NaN + -NaN = NaN.

Do not extend the order <' to R". In IEEE floating-point arithmetic,
any comparison operation involving NaN returns NaN as its result; the com-
parison operations do not even identify NaN as being equal to itself.

A.2 IEEE Floating-Point Arithmetic

Following the IEEE standard, let M,,, for positive integers m and n be the
set of all real numbers of the form

±significand . 2CXP "fle ,

where 0 < significand < 2, significand is an integral multiple of 2 -n, and
-m < exponent < m. The values of m and n vary on different machines.
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Assume that ?n and n are fixed, and let M = M,... U {+0, -0, +oo, -oo}.
M denotes the machine-representable "numerical" values on a machine sup-
porting IEEE-standard floating-point arithmetic.

Let a rounding be a function 0 : R' - M satisfying:

Vx E M (Ox = x) and
Vx,Y ER' (x<y=*Ox<Oy).

Note that these properties have as a consequence that Ox = x or Ox is one
of the two representable values closest to x.

Say that a rounding 0 is upward if Ox > x, and downward if Ox < x.
The downward rounding of zero is -0 and the upward rounding of zero is +0.
The IEEE standard also defines two other types of roundings, toward zero
and to-nearest, and calls for the maintenance of a rounding mode that selects
one of these four roundings as the current rounding. The programmer can
change the rounding mode at will. For * E {+, -, ", /j, the standard calls for
the corresponding machine operation *M to satisfy

X.My =O(X*Y)

for all machine-representable reals x and V, where 0 is the current rounding.
This note will not require the full generality of the IEEE standard, but
will use upward and downward roundings in defining the interval arithmetic
computations. The asymptotic version of the interval semantics also depends
on properties of these roundings.

A.3 Machine Interval Arithmetic

For values a, and a2 in R', with a, <' a2, call a subset of R' of the form

A = (a,, a2] = {t E RIa- t < a2}

an interval. Note that +0 and -0 are distinct as possible endpoints. Let
the special value EMPTY, denoting the empty set, be an interval, and let
POSINF and NEGINF denote the intervals [+oo, +oo] and [-oo,--oo], re-
spectively. POSINF can be thought of as an infinite interval of positive
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reals whose magnitudes are all too large to be machine-representable, and
NEGINF as a similar interval of negative numbers.

The set of possible intervals contains intervals that exactly correspond to
each of the possible values representable in IEEE arithmetic, as well as to
the +NaN and -NaN values introduced in this appendix's Section 2. The
real number x corresponds to the point-interval [x, x]; the values +oo and
-oo correspond to the intervals POSINF and NEGINF, respectively; the
values +NaN and -NaN correspond to the intervals [+0, +oo] and [-oo, -0],
respectively; and NaN corresponds to the interval [-oo, +oo].

For * E {+, -, ", /I and intervals A and B, define the interval operation
A * B as follows: Consider the intermediate set VALUES defined by

VALUES = {a * bla E A, b E B},

where the operations are performed in R". Define new intermediate sets
KNOWN and UNKNOWN by

KNOWN = VALUES \ {+NaN, -NaN, NaN},

and
UNKNOWN = VALUES n {+NaN, -NaN, NaN}.

Replace the values +NaN, -NaN and NaN in UNKNOWN by the intervals
[+0, +oo], [-oo, -0] and [-oo, +oo], respectively, and let UNCERTAIN be
the union of the members of the resulting set. Finally, let A*B be the union
of KNOWN and UNCERTAIN.

Now define the machine-representable intervals and the operations on
them. Let M be the set of machine-representable "numerical" values for
a particular machine. Let T (1) be an upward (downward) rounding that
rounds to values in M. Define a conservative rounding on intervals by

I A = I [a,,a 2] = [I a,,T a2].

Finally, define the machine interval-arithmetic operations for * e {+, -,,
by

A*M B = I (A *B).

The rest of this appendix will only consider machine-representable inter-
vals, so take "interval" as an abbreviation for "machine-representable inter-
val" from now on. Note that all operations are defined for all possible pairs
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of intervals. The ability to compute interval operations is dependent on the
availability of appropriate upward and downward rounding functions; such
functions are available in hardware for machines meeting the IEEE floating-
point standard.

A.4 Semantics of Interval Operations

Assume that the machine on which the interval operations are performed
maintains a finite collection of flags called the status, where each flag in the
status has value SET or CLEAR. Following the IEEE standard, this appendix
considers inexact, invalid-operation, divide-by-zero, overflow and
underf low as possible status flags. Assume programs can test and set the
state of the status flags by making appropriate system calls, and assume,
following the IEEE standard, that all status flags are initially CLEAR but
that once a status flag becomes set it stays set until the program makes a
system call to reset it to CLEAR. Say that an operation causes an exception
if it causes the status flag for a condition to be set if that flag is not already
set. Let each status flag name the exception consisting of causing that flag to
become SET. Note that a single operation can cause more than one exception.

Further, assume that the constants ±0, -0, 1, EMPTY, POSINF and
NEGINF, denoting the intervals [+0, +0], [-0, -0], [1, 1], [1,0], [+oo, ±oo]
and [-oo, -oo], respectively, are available to programs. (The subroutine
doinits in Appendix B creates the necessary constants without causing any
exceptions in the process; these constants will presumably be more readily
available after extensions to C are chosen to take advantage of items available
in IEEE arithmetic.) Also assume the binary functions +, -, ., /, U and l,
and the unary functions length, left-end, right-end and mid-point are
available.

For intervals Q and R, the operation Q * R, for e {+, ,-,/}, is as
defined above. The operation causes the following exceptions in the given
conditions; otherwise the transition does not cause any exceptions:

1. An inexact exception occurs whenever the machine interval produced
as the result of the operation is not the exact result for the operation.
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2. An overflow or underf low exception can occur whenever an inexact
exception occurs. Whether or not one of these exceptions occurs on
a particular operation with particular arguments will vary with the
machine, the operation, the arguments, and the details of exactly how
the interval operations are implemented.

3. A divide-by-zero exception occurs whenever the interval being di-
vided by contains either +0 or -0.

4. An invalid-operation exception occurs in each of these cases: one
or both of the arguments to an operation is EMPTY; the operation is
the sum of two intervals and one has +o as its upper bound and the
other has -oo as its lower bound; the operation is the difference of two
intervals and both intervals have +oo (-oo) as the same bound (i.e.,
both upper or both lower); the operation is interval multiplication, one
of the intervals is not finite (i.e., if it has +oo or -co as a bound), and
the other contains +0 or -0; the operation is interval division, both
intervals contain some zero (i.e., +0 or -0), or both have at least one
infinite bound.

The U of two intervals is the interval from the least point to the greatest
point (under the order <') in the union of the intervals. The n of two intervals
is the (possibly EMPTY) intersection of the intervals. Neither operation
causes any exceptions.

The length of an interval is an interval containing the interval's length. If
the interval is of infinite length, which it will be if it is POSINF or NEGINF,
then its length is POSINF. The length of EMPTY is taken to be 0. If the
value of a length operation is not a point interval or POSINF then the
operation causes an inexact exception; otherwise it causes no exceptions.

The left-end (right-end) of a nonempty interval is the point interval
containing the possibly-infinite least (greatest) point in the interval. The
left and right ends of EMPTY are taken to be POSINF and NEGINF, re-
spectively, thc left and right ends of POSINF are both taken to be POSINF,
and the left and right ends of NEGINF are both taken to be NEGINF. The
left-end operation on an EMPTY or POSINF interval, and the right-end
operation on an EMPTY or NEGINF interval, cause an invalid-operation
exception; otherwise these operations cause no exceptions.
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Appendix B

IEEE Interval Operations

This appendix contains a copy of the file included as intops. c in the interval
algorithm programs given in Appendices C and E. It implements the interval
operations specified in Appendix A. It also contains the function litprint
for showing the binary values of IEEE double-precision floating-point values
as they are implemented on Sun machines, and the function doinits for
creating infinite constants without causing exceptions.

This code is written to run under Release 3.5 of the Sun UNIX 4.2 oper-
ating system. It makes the changes in the rounding mode necessary to give
optimally-rounded intervals with calls to the fpmode_ system call, which has
been replaced with a different system call in more recent releases of the Sun
operating system.

The code begins on the next page.
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/* LITMAX should be as large as the largest number of */
/* calls to litprint in a single invocation of printf */

#define LITMAX 10
#define LITLNGTH 20

char *litprint(x)
double x;
{
static char litstrings[LITMAX] [LITLNGTH];
static int litindex = 0; /* compiler init needed */
char *pstring,*sprintf 0;
unsigned short *px;

px = (unsigned short *) &x;
pstring = litstrings[litindex];

(void) sprintf(pstring,"XO4x %O4x %04x %04x",
*px,*(px+l),*(px+2) ,*(px+3));

++lit index;
if(litindex == LITMAX)

litindex = 0;

return(pstring);
}

void doinits()
{
static unsigned INFPART = Ox7ffOO000;
unsigned *punsign;
double temp;

punsign = (unsigned *) &temp;
*punsign = INFPART;

*(punsign+1) = 0;
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PLUINF = temp;
MININF = -temp;
POSINF.l = PLUINF;
POSINF.r = PLUINF;
NEGINFAl = MININF;
NEGINF.r = MININF;
I

struct interval intsuni(inti,int2)
struct interval intl,int2;

f
struct interval result;

if(int1.l > intl.r 11 int2.l > int2.r) {/* EMPTY argument *
result.l = PLUINF + MININF; /* Cause exception *
result =EMPTY; /* EMPTY result *

I
else{

newmode 2*64 + 2*16;
oldinode =fpmode_.(&nevmode);
result..l = intl.l + int2.l;
newmode =2*64 + 3*16;
newmode =fpmode..(&newmode);
result.r =intl.r + int2.r;
nevmode =fpmode-(koldmode);
I

return (result);
I

etruct interval intdiff(intl,int2)
struct interval intl,int2;

f
struct interval result;

if(intl.l > intl.r IIint2.l > int2.r) {/* EMPTY argument *
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result.l = PLUINF + MININF; /* Cause exception *
result =EMPTY; /* EMPTY result *

I
else{

newmode =2*64 + 2*16;
oldmode =fpmode-(&nevmode);
result.l = intl.l - int2.r;
nevmode = 2*64 + 3*16;
nevmode = fpmode-.(&nevmode);
result.r = intl.r - int2.1;
newmode = fpmode. (&oldmode);
I

return(result);

}tutitra ntrdit~n2

struct interval intprointl it2

int i,j,isinfo;
double templ,temp2,temp3,temp4,lov,high;
struct interval result;
unsigned signi ,sign2,*punsign;

if(intl.l > intl.r 11 int2.l > int2.r) {/* EMPTY argument *
result.l = PLUINF + MININF; /* Cause exception *
result = EMPTY; /* EMPTY result *
I

else{
if(intl.l==O.OI

intl.r==O.OI

int2.r0.OII
isinf(intl.l) I
isinf(intl.r) I
isinf(int2.l) II
isinf(int2 .r)
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/* "Special calculations needed" case *

low =PLUINF;
high =MININF;
for(i=0; i<2; ++i){

temnpl = (i=0)?intl.l:intl.r;
for(j=0; j<2; ++j) f

teuP2 = (j==0)?int2.1:int2.r;
if((templ 0.0 kk isinf(temp2)) I

(temp2 0.0 U& isinf(tempt))

/* NaN case

punsign, = (unsigned *) &templ;
signi = *punsign >> 31;
punsign. (unsigned *) &temp2;
sign2 = *punsign >> 31;
if((signt U sign2)11

(!signi && !sign2)

if(lov > 0.0)
low = 0.0;

high = PLUINF;
I

else{
if(high < 0.0){

high =0.0;
high *=-1;

low =MININF;

else{
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/* Normal case

nevuode = 2*64 + 2*16;
oldnode = fpmode-.(knewmode);
temp3 = tempi * temp2;
newmode = 2*64 + 3*16;
nevmode = fpmode-.(kneviuode);
temp4 = tempi * temp2;
if(temp3 < low)

low = temp3;
else f

if(temp3==O.O U low==O.O){
punsign = (unsigned *) ktemp3;
signI = *punsign >> 31;
punsign = (unsigned *) &low;
sign2 = *punsign >> 31;
if(signl U& !siga2)

low = temp3;

if(temp4 > high)
high = temp4;

else f
if(temp4==O.O U& high=O.O){

punsign = (unsigned *) &temp4;
signI = *punsign >> 31;
punsign = (unsigned *) &high;
sign2 = *punsign >> 31;
if(!signl U& sign2)

high = temp4;

result.l = low;
result.r = high;
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/* cause exception if called for *

if((intl.l <= 0.0 k
intl.r >= 0.0 A&

(isinf~int2.l) IIisinf(int2.r))
) I1
Cint2.l <= 0.0 &
int2.r >= 0.0 k
(isinf(intl.l) IIisinf(intl.r))

temp3 = PLUINF + MINII4F;

else{

/* "Old-fashioned code sufficient" case *

newaode =2*64 + 2*16;
oldmode = fpuode-(&nevmode);
if(intl.l > 0.0) f

if~int2.l > 0.0){
result.l = inti.l * int2.l;
newmode =2*64 + 3*16;
newmode = fpinode-(knewmode);
result.r = intl.r *int2.r;

I
else{

if (int2. r < 0. 0){
result.l - intl.r * int2.l;-
nevmode -2*64 + 3*16;
nevuode - tpmode-.(knevmode);
result.r = intl.l * int2.r;-

I
else{

result.l a intl.r * int2.1;
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rlewmode =2*64 + 3*16;
newmode a fpsode..X&nevnjode);
result.r -intl.r * int2.r;

else{
if(intl.r < 0.0){

if (iza2.1 > 0.0){
result.1 =iutl.l * int2.r;
newmode -2*64 + 3*16;
nevmode afpzaode-(krlewmode);
result.r =intl.r * iflt2.l;
I

else{
if(int2.r < 0.0){

result.1 inti.r * int2.r;
newmode =2*64 + 3*16;
newmode =fpmode-(&nevmode);
result.r =intl.l * int2.1;
I

else{
result.1 =intI.1 * int2.r;
newmode =2*64 + 3*16;
newinode = fpmode-.(&newmode);
result.r = intl.l * int2.1;

else{
if(int2.i > 0.0){

result.j. = intl.l * int2.r;
newmode a2*64 + 3*16;
newiuode -fPmode-(&neYmode);
result.r =intl.r * int2.r;

else{
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if (int2. r < 0. 0){
result.l = intl.r * int2.l;

newinode = 2*64 + 3*16;
newinode = fpmode_.(&nevmode);
result.r - jnti.l * int2.l;
I

else f
tempi = int1-l * int2.r;
temp2 = intl.r * int2.l;
result.l (tempi <= temp2)?templ:temp2;
neumode =2*64 + 3*16;
newinode =fpnode..(knevmode);

temipi - intI-l * int2.l;
temp2 = intl.r * int2.r;
result.r = (tempi >= temp2)?tenipi:temp2;

newniode =fpmode-.(&oldmnode);

return(result);

struct interval intquot(intl,init2)
struct interval intl,int2;

f
int i,j,isinfo;
double templ,temp2,temp3,temp4,low,high;
struct interval result;
unsigned signl,sign2,*punsign;

if(intI.l > intl.r 11 int2.l > int2.r) {/* EMPTY argument *
result.l - PLUINF + MININF; /* Cause exception *
result -EMPTY; /* EMPTY result *
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else{
if(intl.1==0.0I I

intl.r0.0I I
int2.1-0.0I I
int2.r==0.OI I
isinf(intl.l) II
isinf (intl.r) I I
isinf(int2.1) II
isinf(int2.r) I
(int2.l < 0.0 && int2.r > 0.0)

/* "Special calculations needed" case *

if(int2.l < 0.0 && int2.r > 0.0){
result.1 = MININF;
result.r = PLUINF;
temp3 = 0.0;
temp4 = 1.Oltemp3; /* give 0-divide exception *
I

else f
low = PLUINF;
high = MININF;
for(i0O; i<2; ++i){

tempi = (i==0)?intl.l:intl.r;
for(j0O; j<2; ++j) f

temp2 = (j==0)?int2.1:int2.r;
if((templ == 0.0 && teznp2 == 0.0) I

(isinf(templ) && isinf(temp2))

/* Na.N case

punsign = (unsigned *) &tempi;
signi = *punsign >> 31;
punsign - (unsigned *) &temp2;
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signL2 = *punsign >> 31;
if(Csigni &&'sigri2)II

(!signi && !sign2)

if(low > 0.0)
low = 0.0;

high - PLUINF;

else{
if (high < 0.0){

high =0.0;
high *=-1;
I

low - MININF;

/* cause 0-divide if needed *

if (temp2 0. 0){
temp3 =0.0;

temp4 = .0/temp3;

else{

/* Normal. case *

newmode = 2*64 + 2*16;
oldm~ode = fpmode-.(&rnewmode);
temp3 - tempi / temp2;
newmode = 2*64 + 3*16;
newmode - fpmode..(&newmode);
temp4 - tempi / temp2;
if (temp3 < low)

low temp3;
else{
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if (temp3==0 .0&lov=0 .0){

punsign = (unsigned *) &temp3;

signl = *punsign >> 31;
punsigl = (unsigned *) &low;

sign2 = *punsign >> 31;

if(signi M& !siga2)

low = temp3;

if (temp4 > high)

high = temp4;
else f

if (temp4== . 0&&high==O .0){

punsign = (unsigned *) &temp4;

signi = *punsign >> 31;

punsign = (unsigned *) &high;

sign2 =*punsign >> 31;

if(!signl U& sign2)

high = temp4;

I

/cause invalid-op exception if needed *

if((inti.l <= 0.0 UA

intl.r >= 0.0 U&

int2.l <= 0.0 &&

int2.r >= 0.0

((isinf(intl-l) 11isinf(intl.r)) M&

(isinf(int2.l) IIisinf(int2.r)
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temp3 = PLUINF + MININF;

else{

/* "Old-fashioned code sufficient" case

newmode = 2*64 + 2*16;
oldmode = fpmode..(&newmode);
if(inti.l > 0.0) {

if(int2.l > 0.0){
result.1 = intl.l / int2.r;
newmode = 2*64 + 3*16;
newmode = fpmode..(&newmode);
result.r =intl.r /int2.1;
I

else{
result.l inti.r /int2.r;
newmode -2*64 + 3*16;
newinode = fpmode..(&newno-de);
result.r = intl.l /int2.1;

else{
if(intl.r <0.0){

if(int2.l > 0.0){
result.1 = inti.l / int2.1;
newinode = 2*64 + 3*16;
newmode = fpmode-.(&neviuode);
result.r = intl.r /int2.r;
I

else
result.l - intl~r /int2.l;
newmode - 2*64 + 3*16;
newumode -fpmode-.(knewwaode);
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result.r = intl.l /int2.r;

else{
if (int2.l1 > 0.0o){

result.l = intl.l / int2.l;
newmode = 2*64 + 3*16;
newniode -fpmode..(&newznode);
result.r = intl.r /int2.l;
I

else{
result.l = intl.r /int2.r;
newinode - 2*64 + 3*16;
newniode =fpmode_(&newnode);
result.r = intI.l / int2.r;

newmode = fpmode-.(&oldinode);

return(result);
I

struct interval intsqrt(iutx)
struct interval intx;
f
struct interval result;

if(intx.l > intx.r 11 intx.r < 0.0){
intx.1 = PLUINF + MININF; /* generate exception *
result = EMPTY;

I
else{

newuiode =2*64 + 2*16; /* round lower end down *
oldmode = fpmode..(&newinode);

130



if (intx.l1 < 0.0o){
result.l 0,0;
result.l * -1.0;
I}

else
result.l = sqrt(intx.1);

newmode = 2*64 + 3*16; /* round upper end up *
newmode = fpmode-(&newmode);
result.r sqrt(intx.r);
ielwmode =fpmode-(&oldmode);

I
return (result)

Struct interval intunion(x~y)
struct interval x,y;

struct interval result;

if(x.l > x.r)
result = y

else (
if(y.1 > y.r)

result = x
else f

result.1 = (x.1 <= y.1)?X.l:y.1;
result.r = (x.r >= y.r)?x.r:y.r;

return(result).

struct interval intinter(x,y)
struct interval x,y;
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struct interval result;

result.l = (x.1 >= y-l)?x.l:y.l;
result.r = (x.r <= y.r)?x.r:y.r;
if(result.l > result.r)

result = EMPTY;
return (result);
I

struct interval intlength(intx)
struct interval intx;

f
struct interval result;

if(intx.l >= intx.r){
result.l = 0.0;
result.r = 0.0;
I

else{
newmode = 2*64 + 2*16;
oldmode = fpmode..(&nevmode);
result.l = intx.r - intx.1;
newmode =2*64 + 3*16;
newmode = fpmode-(&newmode);
result.r =intx.r - intx.l;
newmode = fpmode-.(&oldinode);
I

return(result);
I

struct interval leftend(intx)
struct interval intx;

struct interval result;
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if(intx.l > intx.r){
intx.l = PLUINF + MININF; /* generate exception *
result = POSINF;
I

else{
if(intx.l PLUINF)

intx.l PLUINF + MININF;/* generate exception *
result.l = intx.l;
result.r = intx.l;

I
return(result);
I

struct interval rightend(intx)
struct interval intx;
f
struct interval result;

if(intx.l > intx.r) {
intx.1 = PLUINF + MININF; /* generate exception *
result = NEGINF;

I
else{

if(intx.r ==MININF)

intx-l =PLUINF + KININF;/* generate exception *
result.l - intx.r;
result.r -intx.r;

I
return(result);
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Appendix C

FFT Multiplication Programs

The following C programs implement versions of an algorithm to use Fast
Fourier Transforms to multiply large integers. The first two give interval
versions of this algorithm, and the last one gives a scalar version. One interval
program is for a Sun and the other is for a VAX. The scalar program is for
a Sun but can be easily modified, by following comments in the code, to
behave similarly on a VAX. If these programs are run with reasonably small
integers as inputs, the exact results of the Fast Fourier Transform algorithm
can be calculated with machine integer multiplication, so the lengths of the
intervals the programs produce are greater than zero, or the floating-point
answers they produce differ from the exact results, only because of error
accumulated in doing the calculations.

As explained in Chapter 2, these programs and their outputs show that,
at least for moderately-complicated calculations, having additional bits in the
mantissas of the floating-point values being calculated has a greater influence
on precision than having optimally-rounded results does. They also illus-
trate that interval algorithms obtained by simply reinterpreting the values of
variables as intervals and the arithmetic operations on these variables as cor-
responding interval operations tend to produce results whose error bounds
are much larger than the actual errors in the corresponding floating-point
calculations.
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C.1 IEEE Interval FFT Multiply

The first program uses IEEE double-precision floating-point arithmetic as im-
plemented on a Sun 3/60 having an MC68881 coprocessor with mask A93N.
Its interval operations force results to be rounded correctly by calling fpmode.
under Release 3.5 of the Sun UNIX 4.2 operating system. Its interval op-
erations, obtained by including the file intops . c, are given in Appendix B;
their semantics is specified in Appendix A.

#include <stdio .h
#include <math.h>

unsigned oldinode,newmode,fpmode_();

double PLUINF,MININF;

struct interval {double l,r;
struct interval EMPTY = {.0, 0.0};
struct interval ZERO f {.0, 0.0};
struct interval ONE fl{.0, 1.0};
struct interval POSINF,NEGINF;

#define KKNUTH 8
#define LKNUTH 8
#define BIGKKNUTH 256

mnt reverse[BIGKKNUTH];

struct interval TWO = (2.0,2.01;
struct interval INT256 = {256.0,256.0};

struct complex {struct interval xy;} vpovEBIGKKNUTH],
v2pov[KKNUTH+1);

main()

f
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void doinitsO;
char *litprintO;
unsigned char *pd;
unsigned numO ,niml ,product;
int i,j,k,rk;
double pover2;
struct interval temp;
struct interval intsunio,intdiff 0.
intprod0 ,intquot0 ,intsqrto;
struct complex s,t 41 [BIGKKNUTH] ,f2 [BIGKKNUTH];

doinits0; /* form infinite constants causing no exceptions *
for(i0O; i < BIGKKNUTH; ++i){

k =;

rk =0;

for(j=1; j < KKNIJTH; ++j){
if (k&l)

Ak += 1;
k >>= 1;
rk <<= 1;

I
if (k&l)

rk += 1;

reverse[i] =rk;

I

w2powill].x.l =-1.0;

w2pow[1].x.r =-1.0;
w2pow[1].y.l =0.0;
w2pow[1.y.r = 0.0;
w2pow[2].x.1 = 0.0;
w2pow[2].x.r =0.0;
v2pow[2.y.1 = 1.0;
w2pow[2].y.r = 1.0;

for(i=3; i <= KKNUTH; ++i){
w2pow~i].x = intsqrt(

intquot C
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iutsum(ONE,w2pow~i-i] .x),

TWO

w2pow[i].y =intsqrt(

iritquot (
intdiff (ONE,w2pow [i-i] .x),
TWO

w2pow [0] = w2pow [KKNUTH];

for(i0O; i < BIGKKNUTH; ++i)
s.x = ONE;
s.y =ZERO;

j = i
k = 0;
while(j ! 0){

if(j&1) (
t.x = intdiff(

intprod(s.x,w2pow[KKNUTH-k] .x),
intprodCs y ,v2pow [KKNUTH-k] y)

t.y = intsum(
intprod(s.x,w2pow[KKNUTH-k] .y),
intprod(s .y,v2pow[KKNUTH-k] .x)

S t;

j >>=

vpov[i] S=

I

(void) fprintf(stderr,'input first positive number: )
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(void) scanf("Yd",&nuznO);
(void) fprintf(stderr,"input second positive number:")
(void) scanf("%d" ,&nuil);

power2 = (double) (1«(KKNUTH + LKNUTH)); /* exact *
for(i=Opd - ((unsigned char *) &num0) + 3;

i < 4;
++i,--pd){

fl[i].x.1 ((double) *pd)/power2; /* exact *

fl(i].y.l 0.0;
fi[i].y.r =0.0;

for(i=4; i < BIGKKNUMH; ++i) I
fl[ilx.l =0.0;
fl[i).x.r =0.0;
fli~i.y.l 0.0;
flrily.r =0.0;

for(i=0,pd = ((unsigned char *) &numl) + 3;
i < 4;

++i,--pd){
f2[i].x.l ((double) *pd)/power2; /* exact *
f2[i] .x.r f2[i] .x.l;
f2[i].y.1 0.0;
f2[i] .y.r 0.0;

for(i=4; i < BIGKKNJTH; ++i){
f2(i] .x.1 =0.0;
f2[i] .x.r = 0.0;
f2[iJ .y.l = 0.0;
f2[i].y.r = 0.0;
I

fft(f 1);
fft(f2);
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for(i0O; i < BIGKKNUTH; ++i){
temp =fi[iJ.x;
fliji].x = intdiff(

intprod(temp,f2[i] .x),
intprod(flI~i].y,f2Ci] .y)

f 1[i] .y = intsum(
intprod(temp~f2[iJ .y),
intprod(f l[il .y,f 2[i] .x)

fft(fl);

f2[0].x.1 = (fl[O].x.l)/((double) BIGKXNUTH); /* exact *
f2CO].x.r = (fI[O].x.r)/((double) BIGKKNUTH); /* exact *
for(i=1; i < BIGKKNUTH; ++i) f

f2[i) .x.1 =(fIfBIGKKNUTH-i] .x.l)/((double) BIGKKNUTH);

f2 Li] .x.r =(f 1[IBIGKKNUTH-i] .x .r)/( (double) BIGKKNUTH);

I

power2 *= power2; /* exact *
for(i-0; i < BIGKKNUTH; ++i) f

f2[i] .x.l * power2; /* exact *
f2[i].x.r *=pover2; 1* exact *

for(i-0; i < BIGKKNUTH - 1; ++i) { * normalize digits *
while(f2[i].x.r >- 256.0) f

f2Ei+1].x = intsum(f2[i+1].x,ONE);
f2[i3.x =intdiff(f2[i).x,INT2S6);

(void) printf("\

\n For the input values %d an~d %d\n\n",
niizia,numl);
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product = nuni0 * nml;

for(i=3,pd = (unsigned char *) &product;
j >= 0;

-- i,++pd){
(void) printf("\

Actual base-256 digit of product: %d\n\
['/20. 16e %20. 16e] \n[(%/s) (%s)] \n',

((int) *pd),
f2[i] .x.l,f2[i] .x.r,
litprint(f2Ci] .x..) ,litprint(f2[i] .x.r));

fft (pa)
struct complex pa[];

int i,jO,jl,k,indexOindexl ,pow20,pow2l;
struct complex eO,el,u,v;

for(i=1; i <= KKNUTH; ++i){
pow20 <i
pov2l = «<(KKNJTH-i);

for(j00O; jO < pow20; jO+=2){
j1 jO+1;
eO = pow[reverse[j 0]];
el -vpov~reverse[jl]];
for(k0O; k < pow2l; ++k){

indexO = jO*pow2l~k;
indexl = indexO + pow2i;
u = pa[indexoJ;
v = pallindexl];
pa[indexo] .x = intsum(

u.x,
intdiff(

intprod(eO.x,v.x),
intprod(eO .y,v .y)
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pa[indexO].y =intsum(

u.y3
intsum(

intprod(eO.x,v.y),
intprod(eO .y,v.x)

pa[indexI].x =intsum(

u.x,
intdiff(

intprod(el.x,v.x),
intprod(el .y,v.y)

pa[indexl] .y intsum(
U.y,
nt sum (

intprod(el.x,v.y),
intprod(el .yv.x)

for(i0O; i < BIGKKNUTH; ++i){
k = reverse[i];
if(i > k) {

u = pa[i];
pa~i] = pa~k];
pa~k] = u;

$include "intops .c"
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C.2 VAX Interval FFT Multiply

The second program uses VAX double-precision floating-point arithmetic as
implemented on a VAX 11/750. Since VAX arithmetic does not support
different rounding modes, its interval operations produce upper and lower
bounds on computed quantities by adding or subtracting amounts equal to
the least significant mantissa bits of these quantities.

#include <stdio.h>
#include <math.h>

#define KKNUTH 8

#define LKNUTH 8

#define BIGKKNUTH 256

it reverse[BIGKKNUTH];

struct interval {double l,r;

struct interval ZERO f O.O, 0.0};

struct interval ONE = 1.O, 1.0};
struct interval TWO f 2.0,2.01;

struct interval INT256 = {256.O,256.O};

struct complex {struct interval x,y;} wpow[BIGKKNUTH],
w2pow[KKNUTH+11;

mainoC
f
char *Iitprinto;

unsigned char *pd;
unsigned numO ,numl,product;

mnt i,j,k,rk;
double power2;

struct interval temp;

struct interval intsumo,intdiff 0,
intprod(),intquoto),intsqrto;
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struct cOmplex s ,t ,fl1 BIGKKNUTH] ,f2 EBIGKKNUTH];

for(i=o; i < BIGKKNJTH; ++i){
k = i

rk =0;
for(j=l; j < KKNUTH; ++j){

if(k&l)
rk += 1;

k >>= 1;
rk <<= 1;

if (k&1)
rA += 1;

reverse~i] =rk;

v2pow[il]x.i -1.0;
w2pow[l].x.r =-1.0;

w2pov[1].y.l = 0.0;
w2pow~l].y.r = 0.0;
w2powE2].x.l = 0.0;
w2pow[21J.x.r =0.0;
w2powdL21 y.1. = i.0;
v2pow[2].y.r = 1.0;
for(i=3; i <= KKNUTH; ++i){

v2pow £i3.x = intsqrt(

intquot(
intsum(ONE,w2pow~i-1] .x),
TWO

w2pow[i3 -y =intsqrt(

intquot(

TWO
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w2pow [0] = w2pow [KKNUTH];

for(i0O; i < BIGKKNUTH; ++i){
s.x = ONE;
s.y =ZERO;
j = i
k =0;
while(j != 0){

if(j&1 {
t.x = intdiff(

intprod(s.x,w2pow[KKNUTH-k] .x),
intprod(s .y,w2pow[KKNUTH-k] .y)

t.y = intsum(

intprod(s.x,w2pow[KKNUTH-k] .y),
intprodCs y ,w2pow [KKNUTH-k] x)

S t;

j >>=

wpow(i] S

I

(void) fprintf(stderr,"inpit first positive number: )

(void) scanf("%d" ,&numO);

(void) fprintf(stderr,Elinput second positive number:")
(void) scanf ('%d" ,&numI);

pover2 = (double) (1<<(KKNUTH + LKNUTH)); /* exact *
for(i=O,pd =(unsigned char *) &ntuuO;

i < 4;

+i+i,++pd){

fi~i].x.l = ((double) *pd)/power2; /* exact *
fi[i] .x.r = fli].x.l;
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fliJ.y.1 0.0;
fl.[i].y.r 0 .0;

:for(i-4; i < B3IGKKN~UTH; ++i){
fi] x-l =0.0;
fi[i].x.r =0.0;
flii.y.i = 0.0;
flii.y.r = 0.0;

for(i=o,pd = (unsigned char *) &numl;
2. < 4;

++i,++pd){
f2[j].x.l ((double) *pd)/power2; /* exact *f2[i] .x.r =f2[j] .x.1;
f2[i].y.1 = .0;
f2[i].y.r =0.0;

I
for(i-4; i < BIGKKNUTHj; ++i){

f2Cj] .x.1 = 0.0;
f2!Ii].x.r = 0.0;
f2[i.y.l = 0.0;
f2[i].y.r = 0.0;

I

fft(f 1);
fft(f 2);
for(i=0; i < BIGKKNyT{; ++i){

terap af1 ii]. x;
flil.x =intdiff(

intprod(tempf2 i] .x),
intprod(fjij] .y,f2[i) .y)

flil]Y= intsum(
iftprod(tempf2[aJ .y),
intprod(fIiil.yf2Ci].x)
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fit (f 1)

f2[0).x.l = (fl[0IJ.x.l)/(double) BIGKKNUTH); /* exact *

f2[0J.x.r = (fI[0].x.r)/((double) BIGKKNUTH); /* exact *

for(i-1; i < BIGKKNUTH; ++i) {
f2[i] .x.1 = (f1[BIGKKNUTH-i) .x.1)/((double) BIGKKNUTH);

f2[i] .x.r = (fI[BIGKKNUTH-i] .x.r)/((double) BIGKKNUTH);

I

power2 *= pover2; /* exact *
for(i0O; i < BIGKKNUTH; ++i) (

f2[i].x.l pover2; /* exact *
f2[i].x.r *pover2; /* exact *

I

for(i0O; i < BIGKKNUTH - 1; ++i) {/* normalize digits *

while(f2[iJ.x.r >= 256.0) {
f2[i+i].x = intsm(f2[i+1].x,ONE);
f2[i] .x = intdiff(f2[i] .x,INT256);

(void) printf('\
\n For the input values %d and %d\n\n",nuinO,numI);
product = num0 * nuini;
for(i=3,pd = ((unsigned char *) &product) + 3;

i >= 0;
--i,--pd){

(void) printf("\
Actual base-256 digit of product: %d\n\

[X20. 16e %20.16e]\n[/.s) (Ys)]\n",
((int) *pd),
f2[i] .x.l,f2[i].xr
litprint(f2 [ii .x.l) ,litprint(f2[i] .x.r));
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ft (pa)
struct complex pa(];
f
int i~jO~jik~indexO,indexl pow2O pow2l;
struct complex eo,el,u,v;

f or(i-1; i <= KKNUTfH; ++i){
pow2O = <i
pow21 - 1<<(KKNUTH-i);
for(jO=O; jO < pow2O; jo+=2){

ji= jO+1;
eQ - vpow[reverse~jO];
el - wpow[reverse(jilJ;
for(k0O; k < pov21; ++k){

indezO = jo*pow2l+k;
indexi = indexO + pow2l;
u = pa~indexo];
v = pa[indexl];
pa~indexo].x = intsum(

u.X,
intdiff C

intprod(eO.xv.x),
intprod(eQ.y,v .y)

pa~iridexO].y =intsum(
u.ys
intsui(

intprod(eO.x,v.y),
irtprod(eO.y,v.x)

pa~indexl) .x intsum(

intdiff(
intprod(el.x,v.x),
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intprod(el y ,v .y)

pa[indexl].y =intsum(

u.y,
intsum (

intprod(el.x,v.y),
intprod(el .y,v.x)

for(i0O; i < BIGKKNUTH; ++i){
k = reverse[i];
if(i > k) f

u = pa[i];
pani] = pa[lc];
pa[c] = u

#define dowrisum(X ,Y) decrement ((X)+(Y))
#define upsum(X,Y) increment((X)+(Y))

struct interval intsum(intl,int2)
struct interval intl,int2;

f
double decremento),incremento;
struct interval intr;

intr.l = downsuin(intl.l,int2.l);
intr.r = upsum(intl.r,int2.r);
return(intr);
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struct interval intdiff(intl~int2)
struct interval intl,int2;

double decrement (),increment 0;
struct interval intr;

intr.l = downsum(intI.l,-int2.r);
intr.r - upsum~intl.r,-int2.l);
return(intr);

*define dovuprod (X,Y) decrement (CX) * Y))
*def ine upprod(X,Y) iucrement( (X)*(Y))

struct interval intprod(intl,int2)
struct interval intl,int2;

double tempi ,temp2;
double decrement 0, increment 0;
struct interval intr;

if(inti.l >- 0.0) (

if(int2.l >= 0.0){
intr-l - downprod(inti.l,int2.1);
intr.r - upprod(int1.r,int2.r);
I

else{
if(int2.r <- 0.0){

intr.l - downprod(inti.r,int2.l);
intr.r - upprod(intl.l~int2.r);

else{
intr.l - dovnprod(inti-r,iut2.1);
intr.r - upprod(intl.r,int2.r);
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else f
if(inti-r <= 0.0)

if(int2.1 >- 0.0){
intr.l dovnprod~inti.l,int2.r);
intr.r =upprod(intl.r~int2.)

else{
if(int2.r <= 0.0){

intr.l - downprod(int1.r,int2.r);
intr.r =upprod(intl.l,int2.1);

I
else{

intr.1 dowuprod(int1l,iut2.r);
intr.r =upprod(intl.l,int2.1);

else{
if(int2.l >= 0.0){

intr.l = dovnprod~intI.l,int2.r);
intr.r = upprod(intl.r,int2.r);

I
else f

if(int2.r <= 0.0){
intr.1 = downprod(intl.r~int2.1);
intr.r =upprod(intl.l,int2.l);

I
else{

tempi = dovnprod~intI.l,int2.r);
temp2 = dovuprod(intI.r,int2.)
intr.1 a(tempi <- temp2)?templ:temp2;
tempi = upprod(intl.l,int2.1);
temp2 - upprod(int1.r,int2.r);
intr.r = (tempi >- temp2)?tempi:temp2;
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return(intr);
I

#def ine dovuquot (X,Y) decrement (CX) /(Y))
*define upquot CX, Y) increment ((X)/ CY))

struct interval intquot(inti,int2)
struct interval intl,int2;

double decrement C),increment 0;
struct interval intr;

if(int2.l <- 0.0 && int2.r >= 0.0){
(void) fprintf(stderr,"irxterval division by zero\n");
exit(1);

if(intl.l >= 0.0){
if(int2.l > 0.0){

intr.l dovnquot(intl.l,int2.r);
intr.r = upquot(intl.r,int2.l);
I

else{
intr.l dovnquot(intl.r,int2.r);
intr.r =upquot(intl.l,int2.l);

else{
if(intl.r <- 0.0){

if(int2.1 > 0.0){
intr.l - dovuquot(intl.l,int2.l);
intr.r - upquot(intl.r,int2.r);



else f
intr.1 = downquot(intI.riut2.l);
intr.r = upquot(intl.l,int2.r);

else f
if(int2.l > 0.0){

intr.l = dovnquot(int1.l,int2.1);
intr.r = upquot(intl.r,iit2.l);

I
else{

intr.l - dovnquot(int1.r,int2.r);
intr.r = upquot(intl.l,int2.r);

return(intr);

struct interval intsqrt(intx)
struct interval intx;

f
double increment(),decremento;
struct interval result;

if(intx.l > intx.r 11 intx.r < 0.0){
(void) fprintf(stderr,"square root of negative quantity\n");
exit (1)

I
else{

if(intz.l < 0.0)
result.1 = 0.0;

else
result.1 = sqrt(intx.1);

result.r - sqrt(intx.r);
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if(result.l > 0.0)
result.l = decrement(result.l);

if(result.r > 0.0)
result.r = increment(result.r);

I
return (result);
I

#define MAX 1.7014118346046923e+38
#define NEGMAX -1 .7014118346046923e+38
*define MIN 2.9387358770557 188e-39
*define NEGMIN -2. 9387358770557188e-39

double increment Cx)
double x;
f
unsigned char *pexpiO,*pexpii, *pexp2O, *pexp2i;
double mini;

if(x == MAX){
(void) fprintf (stderr,"\

attempt to increase largest value\n");
exit (1)
I

if(x -- 0.0)
return(MIN);

if(x -- NEGMIN)
return(0.0);

mini - 0.0;
pexplO - ((unsigned char *) &x);
pexpli - pexplO + 1;
pexp20 - ((unsigned char 0) ftini);
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pexp2l - pexp20 + 1;
*pexp20 - *pexplO & 128; /* modifies mini -- remember, */
*pexp2l = *pexpll & 127; /* leading mantissa 1 implicit */
if(*pexp2i >= 28) f

*pexp21 - 28; /* mini is now half the value */
x + 2.0 * mini; /* of the least bit of x
}

else {
*pexpll += 28; /* scale x to avoid underflow */
x +- 2.0 * mini; /* mini again half least bit */
*pexpil -f 28; /* scale x back */

}

return(x);
}

double decrement (x)
double x;

unsigned char *pexpO,*pexpll,*pexp2O,*pexp2i;
double mini;

if(x == NEGMAX)
(void) fprintf(stderr,"\

attempt to decrease most negative value\n");
exit(i);

}

if(x =- 0.0)
return(NEGMIN);

if(x == MIN)

return(O.0);

mini - 0.0;

pexplO - ((unsigned char *) &x);
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pexpli = pexpla + 1;
pexp20 = ((unsigned char *) fmini);
pexp2i = pexp20 + 1;
*pexp2O = *pexpi0 & 128; /* modifies mini -- remember, *
*pexp2i = *pexpil & 127; /* leading mantissa 1 implicit *
if(*pexp2i >= 28) (

*pexp21.- 28; /* mini is now half the value *
x--2.0 *mini; /* of the least bit of x *
I

else{
*pexpII += 28; /* scale x to avoid underf low *
x -- 2.0 *mini; /* mini again half least bit *
*pexpIl - 28; /* scale x back *
I

return(x);
I

/* LITMAX should be as large as the largest number of *
/* calls to litprint in a single invocation of printf *

#define LITHAX 10
*define LITLNGTH 20

char *litprint(x)
double x;

static char litstrings ELITMAX] [LITLNGTH];
static mnt litindex - 0; /* compiler mnit needed *
char *pstring,*sprintf 0;
unsigned short *px;

px - (unsigned short *) ft;
pstring - litstrings[litindex];

(void) sprintf(pstring,"%04x %.04x %/04x %04x",



f1

*px,*(px+1) ,*(px+2) ,*(px+3));

++1 it index;
if(litindex == LITMAX)

litindex f 0;

return(pstring);

I

C.3 Scalar FFT Multiply

The final program implements an ordinary floating-point version of an algo-
rithm to use Fast Fourier Transforms to multiply large integers. Although
the program as it is given is written to run on a Sun, comments in the code
describe the simple adaptations needed to have it produce similar results on
the VAX.

#include <stdio.h>
#include <math.h>

#define KKNUTH 8
#define LKNUTH 8
#define BIGKKNUTH 256

int reverse[BIGKKNUTH];
struct complex {double x,y;} wpow[BIGKKNUTH],

w2pow[KKNUTH+1];

main()

char *litprintO;
unsigned char *pd;
unsigned numO,numl,product;
int i,j,k,rk;

double power2,temp;
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struct complex s ,t ,fl1 BIGKKNUTH] ,f 2 BIGKKNUTH];

for(i=0; i < BIGKKNUTH; ++i) {
k i;

rk =0;

for(j=1; j < KKNUTH; ++j) f
if (k&1)

rk += 1;
k >>= 1;
rk << 1;

if (k&1)
rk += 1;

reverse [ii = rk;

w2pow[1].x = -1.0;
v2pow~l].y = 0.0;
w2pow[2].x = 0.0;
w2pow[2].y = 1.0;
for(i-3; i <= KKNUTH; ++i){

w2pow[iJ.x = sqrt((1.0 + w2pov~i-1].x)/2.0);
w2pow~i].y = sqrt((1.0 - w2pov[i-I].x)/2.0);

I
w2pow [0] = v2pov [KKNUTI];

for(i=0; i < BIGKKNJTH; ++i){
s.x = 1.0;
s.y - 0.0;
j -=
k - 0;

while(j !- 0){
if (jkl) (

t.x = s.x * w2pow[KKNUTH-kl.x-
s.y * v2pow[KKNIJTH-k] .y;

t.y = s.x * v2pov[KKNUTH-k).y +

s.y * w2pow[KKNTJTH-k] .x;
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s = t

I
>>=

j k;

wpow[i) - s
I

(void) fprintf(stderr,"input first positive number:")
(void) scanf('%d" ,&numO);

(void) fprintf(stderr,"input second positive number:")

(void) scanfC'%d" ,jnjmj);

power2 = (double) (1«(KKNUTH + LKNUTH));
for(i=0,pd = ((unsigned char *) &numn0) + 3; /* See Note *

i < 4;
++i,--pd) { * See Note *

fliW.x = ((double) *pd)/power2;
fl[i].y = 0.0;
I

for(i=4; i < BIGKKNUTH; ++i){

flri].x = 0.0;
fl[i].y = 0.0;
I

for(i=0,pd = ((unsigned char *)&numl) + 3; /* See Note *
i < 4;

++i,--pd) {/* See Note *
f2[i] .x = ((double) *pd)/power2;
f2[i].y = 0.0;

I
for(i=4; i < BIGKKNUTH; ++i){

f2Ei].x = 0.0;
f2[i).y = 0.0;

I

fft(f 1);
fft(f2);
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for(i-0; i < BIGKKNUTH; ++i){
temp - fl[i].x;
fl[i).x = temp * f2[i].x -fl~ily * f2[i].y;
fl~i].y = temp * f2[i].y + fl[i].y * f2[il.x;
I

fft(f 1);

f2[01 .x - (fI[O] .x)/((double) BIGKKNUTH);
for(i-1; i < BIGKKNUTH; *+i)

f2[i] .x = (fl[BIGKKNUTH-i] .x)/(double) BIGKKNUTH);

pover2 *- pover2;
for(i.O; i < BIGKKNUTH; ++i)

f2[i].x *= power2;

for(i0O; i < BIGKKNUTH - 1; ++i) {/* normalize *
while(f2[i].x >= 256.0) f

f2[i+t].z += 1.0;
f2[iJ.x - 256.0;

(void) printf(4t
\n For the input values %d and %d\n\n",

nuniO,nuzl);

product - num0 * numi;
for(i=3,pd - (unsigned char *) &product; /* See Note *

i >- 0;
--i,++pd) {/* See Note *

(void) printf CA
Actual base-256 digit of product: %d\n\
%20. 16e\n(%s)\n",

(Cint) *pd),f2[i) .x,litprint(f2[i] .x));
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/* Note: On the VAX, the individual bytes of a floating
point value are addressed differently. The three loops
noted above should be changed to

for(i=O,pd = ((unsigned char *) &numO);
i < 4;

++i,++pd) {

for(i=O,pd = ((unsigned char *) &uuml);
i < 4;

++i,++pd) {

for(i=3,pd = (unsigned char ) &product + 3;
i >= 0;

--i,--pd) {

to make the program behave the same on the VAX as it
does on the Suns. */

fft (pa)
struct complex pa[];
{
int i,jO,jl,k,indexO,indexl,pow2O,pow2l;
struct complex eO,el,u,v;

for(i=1; i <= KKNUTH; ++i) {
pow20 = <<i;
pow2l = 1<<(KKNUTH-i);
for(j0=0; jO < pow2O; jO+=2) {

ji - jo+1;
eO = wpow [reverse [j O];
el = wpow[reverse[jl]];
for(k=0; k < pow2l; +k) {

indexO = jO*pow2l+k;
indexI = indexO + pow2l;
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u = pallindexa];
v = patindexi];
parindexo].x = u.x + eO.x*v.x - eO.y*v.y;
pa[indexO].y = u.y + eO.x*v.y + eO.y*v.x;
pa[indexl].x = u.x + el.x*v.x - el.y*v.y;
pa[indexlIy = u.y + el.x*v.y + el.y*v.x;

for(i=O0; i < BIGKKNUTH; ++i){
kc = reverse[i];
if(i > k) f

U = pa~i];
pa~i] = pa[k];
pa~k] = u

/* LITMAX should be as large as the largest number of *
1* calls to litprint in a single invocation of printf *

#define LITMAX 10
#define LITLNGTH 20

char *litprint(x)
double x;

static char litstringsLITMAX] [LITLNGTH];
static int litindex = 0; /* compiler init needed *
char *pstring,*sprintfo;
unsigned short *px;

*x (unsigned short *) &x;
pstring -litstrings~litindex];
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(void) sprintf(pstriug2'Y.041 %04x %04x %.04x",
*px,*(px+i) ,*(px+e2) ,*(px+3));

++litindex;
if(litizidex ==LITHAX)

litindex = 0;

return(pstring);
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Appendix D

FFT Multiply Comparisons

This appendix contains an edited collection of output from the interval and
scalar versions of the programs given in Appendix C, programs that use Fast
Fourier Transforms to multiply large integers. In all cases, results are first
given in decimal form, then as hexidecimal descriptions of the actual bit
patterns that code the double-precision interval endpoints or scalar values
on the machine being used. These results are discussed in Chapters 2 and 3.

The Sun interval results were obtained using upwardly- or downwardly-
rounded IEEE double-precision floating-point values, as implemented on a
Sun 3/60 having an MC68881 coprocessor with mask A93N, as interval end-
points. The VAX interval results were obtained by forming uppet and lower
bounds on computed quantities by adding or subtracting amounts equal to
the least significant mantissa bits of these computed quantities. The VAX
interval computations were made on a VAX 11/750. The Sun scalar results
were obtained using the IEEE default, round-to-nearest rounding mode on
the same Sun 3/60 machine. The VAX scalar results were obtained using the
only rounding mode available to VAX arithmetic, which is similar to round-
to-nearest but rounds to the value with larger magnitude rather than the
value with least significant bit 0 when two representable values are equally
close to a nonrepresentable intermediate result. The VAX scalar computa-
tions were made on the same VAX 11/750.

The edited output begins on the next page.
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For the input values 17 and 34

Actual base--256 digit of product: 0

[0. 0000000000000000e+00 0. 0000000000000000e+00] (IEEE)
[(8000 0000 0000 0000) (0000 0000 0000 0000)]

[-3 .0804118409741014e-13 3. 0804118409741014e-13] (VAX)

[(abad 6969 c640 0b7b) (2bad. 6969 c640 Ob7b)]

0 .0000000000000000e+00 (IEEE)
(0000 0000 0000 0000)

0.0000000000000000~e+00 (VAX)

(0000 0000 0000 0000)

Actual base-256 digit of product: 0

[0.0000000000000000~e+00 0.0000000000000000~e+00] (IEEE)

[(8000 0000 0000 0000) (0000 0000 0000 0000)]

-2. 6524986067235032e- 13 2. 6524986067235032e- 13] (VAX)
[(ab95 5288 973f f980) (2b95 5288 973f f980)]

0 .0000000000000000e+00 (IEEE)

(0000 0000 0000 0000)

0.0000000000000000e+00 (VAX)

(0000 0000 0000 0000)

Actual base-256 digit of product: 2

[2.0000000000000000~e+00 2 .0000000000000000e+00] (IEEE)
[(4000 0000 0000 0000) (4000 0000 0000 0000)]

[1. 9999999999997548e+00 2 .0000000000002452e+00] (VAX)
[(40ff ffff ffff dd7f) (4100 0000 0000 1141)]

2. 0000000000000000e+00 (IEEE)
(4000 0000 0000 0000)

2.0000000000000000~e+00 (VAX)

(4100 0000 0000 0000)

Actual base-256 digit of product: 66
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[6. 6000000000000000e+01 6.6000000000000000e+01] (IEEE)

[(4050 8000 0000 0000) (4050 8000 0000 0000)]

[6. 5999999999999494e+01 6. 6000000000000506e+O 1] (VAX)
[(4383 ffff ffff fee3) (4384 0000 0000 O11d)]
6. 6000000000000000e+01 (IEEE)

(4050 8000 0000 0000)

6. 6000000000000000e+01 (VAX)

(4384 0000 0000 0000)

For the input values 8724 and 9683

Actual base-256 digit of product: 5

[4.9999999999685540e+00 5 .0000000000314415e+00] (IEEE)
[(4013 ffff ffff 75b3) (4014 0000 0000 8a48)]
[4. 9999999999822684e+00 5. 0000000000177497e+00] (VAX)
[(419f ffff fffd 8fc6) (41a0 0000 0002 7083))

4. 9999999999999734e+00 (IEEE)
(4013 ffff ffff ffe2)
5.0000000000000000~e+00 (VAX)
(41a0 0000 0000 0000)

Actual base-256 digit of product: 8

[7. 9999999999729425e+00 8.0000000000275 122e+001 (IEEE)

[(401f ffff ffff 8900) (4020 0000 0000 3c80)]

[7. 9999999999841335e+00 8.000000000016 1793e+00] (VAX)

[(41ff ffff fffd dlbf) (4200 0000 0001 Ical)]
8. 0000000000002274e+00 (IEEE)

(4020 0000 0000 0080)

8 .0000000000001705e+00 (VAX)
(4200 0000 0000 0300)

Actual base-256 digit of product: 250
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[2.4999999999994088e+02 2.65000000000006276e+023 (IEEE)
[(406f 3ff f 1ff f7e0) (406f 4000 0000 08a0)]
[2.4999999999996529e+02 2.50000000000036 19e+02] (VAX)
[(4479 f ff1 ffff d9d5) (447a 0000 0000 27cb)]
2. 5000000000000000e+02 (IEEE)
(406f 4000 0000 0000)
2. 5000000000000091e+02 (VAX)
(447a 0000 0000 0100)

Actual base-256 digit of product: 124

[1.2399999999998454e402 1 .2400000000001546e+021 (IEEE)
[(405. 11ff ff11 fbc0) (4051 0000 0000 0440))
[1.2399999999999007e402 1.240000000000 1038e+02] (VAX)
[(43f 7 ffff ft If ea2b) (43f8 0000 0000 16d5)]
1 .2400000000000000e+02 (IEEE)
(4051 0000 0000 0000)
1.240000000000001 1e402 (VAX)
(43f8 0000 0000 0040)

For the input values 9473281 and 6734529

Actual base-256 digit of product: 38

[3. 7999999999447027e+01 3. 8000000000574801e+01] (IEEE)
[(4042 ffff ft t. dOOO) (4043 0000 0001 3c00)]
[3. 7999999999444603e+0 1 3.8000000000564492.401] (VAX)
[(4317 ffff ft t6 7557) (4318 0000 0009 b2a9)]
3 .8000000000007276e+01 (IEEE)
(4043 0000 0000 0400)
3 .8000000000006366e+01 (VAX)
(4218 0000 0000 IcOO)

Actual base-256 digit of product: 59

[5.8999999999548891.401 5 .9000000000465661e+01] (IEEE)
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[(404d 7fff ffff 0800) (404d 8000 0001 0000)]

[5.8999999999541919e+01 5 .9000000000467176e+01] (VAX)

[(436b ffff fff8 2157) (436c 0000 0008 06a9)]

5. 9000000000000000e+01 (IEEE)
(404d 8000 0000 0000)

5 .9000000000006366e+Ol (VAX)
(436c 0000 0000 1c00)

Actual base-256 digit of product: 15

El .4999999999570719e+01 1 .5000000000440195e+01] (IEEE)
[(402d ffff fffc 5000) (402e 0000 0003 c800)]

[1 .4999999999748830e+0l 1 .5000000000256172e+01] (VAX)

E(426f ffff ffee bd5f) (4270 0000 0011 9aa1)]

1. 5000000000003638e+01 (IEEE)

(402e 0000 0000 0800)
1. 5000000000003183e+01 (VAX)

(4270 0000 0000 3800)

Actual base-256 digit of product: 193

El1.9299999999982782e+02 1 .9300000000017249e+02] (IEEE)
U(4068 lfff ffff e856) (4068 2000 0000 17b5)]

[1 .9299999999990635e+02 1 .9300000000009354e+02] (VAX)

[(4440 ffff ffff 9907) (4441 0000 0000 66d8)]
1. 9299999999999977e+02 (IEEE)
(4068 If ff ffff fff8)

1 .9300000000000008e+02 (VAX)

(4441 0000 0000 0017)
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Appendix E

Interval-Newton's Code

The following code implements Alefeld and Herzberger's [Ale86] Interval
Newton's Method, discussed in Chapter 2, for IEEE double-precision floating-
point arithmetic as implemented on a Sun 3/60 having an MC68881 copro-
cessor with mask A93N. Its interval operations force results to be rounded
correctly by calling fpmode_ under Release 3.5 of the Sun UNIX 4.2 operating
system. Its interval operations, obtained from the file intops. c, are given
in Appendix B; their semantics is specified in Appendix A.

#include <stdio.h>
#include <math.h>

unsigned oldmode,nevmode,fpmode_();

double PLUINF,MININF;

struct interval {double l,r;};
struct interval EMPTY = {1.0, 0.0};
struct interval TWO ={2.0, 2.0};
struct interval POSINF,NEGINF;

#define MAXDEG 10

int degree;

168



double coeffEI4AXDEG+1);

void memnO
f
void doinits0;
char *litprint0;
imt i;
struct interval intlength(),midpointo),intinter0;
struct interval intdiff(),intquoto;
struct interval intf 0;
struct interval start, intx,intm,middle,newlength,oldlength;

doinits0;

(void) fprintf(stderr,"input degree <= %d of polynomial f: "

MAXDEG);

(void) scanf("%d",&degree);
for(i-degree; i >- 0; --i){

(void) fprintf(stderr,"input coefficient of %-%d: 11,i);
(void) scanf ("%JlfII, coeffi));

I
(void) fprintf(stderr,"input point x at which f(x) < 0: )

(void) scanf(II%lf'I,&start .1);

(void) fprintf(stderr,'input point x at which f(x) > 0: )

(void) scanfIIY.1f,&start .r);
(void) fprintf(stderr,
"For the next two inputs, x ranges over the interval\n\
just input, and r is a root of f in this interval.\n");
(void) fprintf (stderr,
"ipu positive lover bound on f(x)/(x-r): )

(void) scanf("X~lf".&intm.l);
(void) fprintf (stderr,
"input positive upper bound on f(x)/(x-r):';
(void) scanf(II%lf",&intm.r);

intx = start;

nevlength intlength(intx);
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do{
oldlength =newlength;
middle = midpoint(intx);
intm = iutin~ter(

intx,
intdiff(

middle,
intquot (

intf (middle),
intm

newlength intlength(intx);
I while(newlength.r < oldlength.l);

(void) printf('\n For the polynomial f(x) \nl)
for(idegree; i >= 0; -- i) f

(void) printf(" %20. 16e xl'.d",coeff[iJ ,i);
if(i > 0)

(void) printf (" +\n9)
else

(void) printf C' ,\n");
I

(void) printf C' if the interval\n\
[%/20. 16e Y,20. 16e]\n\

contains a root r, and for every x in the\n\
interval it is true that f(x)/(x-r) belongs\n\
to the interval\n\

[%20. 16e X20. 16e] ,\n\
then a root of f is contained in the interval:\n\n\

[%20.16e %20.16e], i.e.,\n\

start .1,start.r,
intm.l ,intm.r,
intx .1,intx. r,
litprint(intx.1) .litprint(intx.r));
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}tutitralit~nx
struct interval intfxitx

double low,high,f 0;
struct interval result;

newmode = 2*64 + 2*16;
oldnode = fpnode_(&newmode);
low =f(intx.l);

high f(intx.r);
result.]. (low <= high)?low:high;
newmode =2*64 + 3*16;
newmode =fpmode_(&newjode);
low =f(intx.l);
high f(intx.r);
result.r =(high >= low)?high:low;
newniode =fpmode_(&oldmode);

return (result);

I}

double f(x)
double x;

{mt i;
double y;

y = 0.0;
for(i-degree; i >= 0; --i){

y

y += coeff~i];
I

return(y);
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struct interval midpoint(intx)
struct interval intx;
f
struct interval leftendo),rightendo,
intsun(),intquoto;
struct, interval result;

result = intquot(
intsum(

leftend(intx),
rightend(intx)

TWO

return (result);

I

#include "intops~c
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Appendix F

Interval-Newton's Results

This appendix contains output results from the program implementing the
interval version of Newton's Method developed by Alefeld and Herzberger
[Ale86] and given in Appendix E. All calculations were performed on a Sun
3/60 having an MC68881 coprocessor with mask A93N. All calculations were
performed in the IEEE default round-to-nearest rounding mode. These re-
sults are discussed in Subsection 2.3.2.

By way of comparison, the arbitrary-precision constructive-real calculator
developed by Boehm [Boe87] gives the following:

V2 & 1.414213562373095048801688724,
, 1.442249570307408382321638311, and
, 1.379729661461214832390063464.

For the polynomial f(x) =
1.0000000000000000e+O0 x-2 +
O.O000000000000000e+O0 x-l +
-2.0000000000000000e+O0 x-O

if the interval
[l.O000000000000000e+O0 2.0000000000000000e+001

contains a root r, and for every x in the
interval it is true that f(x)/(x-r) belongs
to the interval
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(2.0000000000000000e+00 4.0000000000000000e+00],
then a root of f is contained in the interval:

[1 .4142135623730949e+00 1 .4142135623730951e+00], i.e.,
[(3ff 6 aO9e 667f 3bcc) (3ff 6 aO9e 667f 3bcd)].

For the polynomial f(x) =

1.0000000000000000e+00 x-3 +

0.0000000000000000e+00 x-2 +
0.0000000000000000e+00 X-1 +
-3.0000000000000000e+00 x-0

if the interval
[1.0000000000000000~e+00 2. 0000000000000000e+00]

contains a root r, and for every x in the
interval it is true that f(x)/(x-r) belongs
to the interval

[3.0000000000000000e+00 1.2000000000000000e+01],
then a root of f is contained in the interval:

[1.4422495703074083e+00 1.4422495703074085e+O00, i.e.,

[(3ff7 1374 4912 3ef6) (3ff 7 1374 4912 3ef7)j.

For the polynomial f(x) =

1.0000000000000000e+00 x-5 +
0.0000000000000000e+00 x-4 +

0.0000000000000000e+00 x^3 +

0.0000000000000000e+00 x-2 +

0.0000000000000000e+00 x-1 +
-5.0000000000000000e+00 x-0

if the interval
[1 .0000000000000000e+00 2.0000000000000000~e+00]

contains a root r, and for every x in the

interval it is true that f(x)/(x-r) belongs
to the interval

[5.0000000000000000e+00 8.0000000000000000e+01],
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then a root of f is contained in the interval:

[1.3797296614612147e+00 1.3797296614612149e+001, i.e.,

C(3ff 6 13Sf 68d4 cOcb) (3ff 6 135f 68d4 cOcc)].
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Appendix G

A Correctness Difficulty

As we explain in Section 2.4, the following C program is a counterexample to
the spirit of our conjecture that programs using interval arithmetic that are
provably asymptotically correct are also effectively asymptotically correct.
The program computes ir using Machin's formula [BB87],

r= 4 arctan () - arctan

and the power series
X3 X5 X7

arctan x = x - - + - - - +

3 5 7

#include <stdio. h>

main()

{
double m,pow5,pow239;
double low,high,oldlow,oldhigh;

low = 0.0;
high = 16.0/5.0 - 4.0/239.0;
M - 1.0;
pow5 = 5.0;
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pow239 =239.0;
do f

oldiow =low;
m += 2.0;
pow5 *= 25.0;
pov239 *= 57121.0;
low =high - 16.0/(pow5*m) + 4 .0/(pow239*m);

oldhigh = high;
m += 2.0;
pow5 *= 25.0;
pow239 *= 57121.0;
high = low + 16.0/(pow5*m) - 4 .0/(pow239*m);

I while(low < high && low > oldlow && high < oldhigh);

(void) printf(
'An Computed approximations to bounds on pi:\n\n\

lower bound -- %20.16e\n\
upper bound -- %20.16e\n\n',low,high);
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Appendix H

Caliban Continued Fractions

The following Caliban code [BMS89], discussed in Subsection 6.4.1, computes
and displays standard and generalized continued fractions. If the user sim-
plifies the expression getcfrac n in the Clio prover [BMS89], where n is a
base-10 expression for a nonnegative integer no greater than 134217728, the
code produces a list of the fractions i/n for n < i < 2n and their standard
and optima: continued fraction expansions. The name arith refers to the
file arith.def, which contains definitions of standard constants, arithmetic
operations and order relations on natural numbers, integers and rationals.
The file arith.def is given below.

Comments in the code use "term" to mean "partial quotient". The cfrac
function computes standard continued fractions and the negfrac function
computes optimum ones. The name negfrac refers to the possible occurence
of negative numbers as partial quotients in optimum continued fractions.

FROM arith IMPORT izero,ione,ilesseq,iabs
FROM arith IMPORT iplus,idiff,imult,idiv

11 Operations on integers

nextterm p q = t, ilesseq (iabs (idiff p (imult t q)))
(tabs (idiff p (imult tp q))); tp

where t =idiv p q

tp * iplus t ione, ilesseq izero t; idiff t ione
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cfrac <<p, «<ZERO,ZERO > >> [
cfrac «<p,q > = ti (cfrac <<q, (idiff p (imult ti q))>>)

where ti = idiv p q

negfrac <<p, «ZERO,ZERO> >> = [I
negfrac «<p,q > = t2 :(negfrac <<q, (idiff p (imult t2 q))>>)

where t2 = nextterm p q

IOperations creating continued fractions. They use NUMs
Ito enumerate the basic possibilities.

nwnseq a b = [0, b<a; a:(numseq (a+1) b)

numtoint a = «<(#a),ZERD>

ipair [I a = U]
ipair (a:l) b = «<a,b :(lpair 1 b)

lcfrac [U = U]
lcfrac («<a,b >:l) = lcfrac l,cfl=cf2;

<< <(ab ,("\n"),cfl,(\n"),cf2,("'\n") >>
:lcfrac 1

where
cfl = (cfrac «<nuitoint a, numtoint b>>)
cf 2 = (negfrac «<nuntoint a, nunitoint b>>)

getcfrac n = [1,n<1; lcfrac (ipair (nuinseq n (2*n)) n)

The file arith .def follows. Its PROVE statements state mathematical
facts that allow Clio to simplify many expressions.

IEdited version of -hoard/testdir/arith.def
IAlso includes code from -mark/oracled/testdir/nat.def

IDefine the natural numbers.
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nplus ZERO n = n
nplus (SUCC n) mi- SUCC (nplus n in)

ndiff n ZERO = n
ndiff ZERO n = ZERO
ndiff (SUCC mn) (SUCC n) = ndiff m

nauilt ZERO n = (!n)->ZERO;botton
nmult (SUCC m) n = nplus (ninult m n1)n

niess ZERO (SUCC mn) = true
niess n ZERO = false
niess (SUCC n) (SUCC mn) = niess n mn

nlesseq n n = true
nlesseq n in = niess n mn

ndiv mn ZERO = bottom
ndiv mn n = (nlesseq (SUCC mn) n)->ZERO;

SUCC (ndiv (ndiff mn n) n)

IDefine the integers. Integers are pairs of natural
Inumbers: <(i,n > is rn-n. In all except intermediate
Icalculations, at least one of mn and n is ZERO.

isiinp «<ZERO,n > = <<ZERO,n >
isiinp «in,ZERO > = «inZERO >
isiznp «<(SUCC i),(SUCC n)>> = isiinp «in,n >

izero =«<ZERO,ZERO >

ione = «<(#1) ,ZERO >

iplus «<i,j > «k,l > - isiinp «<nplus i k, nplus j 1 >

idiff <<i,j > (<k,l > = isirnp «<nplus i 1, nplus j k >
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imult «<i~j «<k,l >
isimp «<(nplus (nmult i k) (nmult j 1)),

(nplus (nult i 1) (nmult j k))>>

idiv «<i,j>> <kk = bettom
idiv «<i,7'-RU «<k,ZERO > = «<ndiv i k, ZERO >
idiv <<ZaU,_ > <<ZERO,l > = «<ndiv j 1, ZERO >
idiv «<i,ZERO > «ZEROl = «<ZERO, ndiv i 1>>
idiv «<ZERO,j > «k,ZERO > = «<ZERO, ndiv j k >
idiv x y = idiv (isimp x) (isimp y)

jabs «<i,ZERO>> = «<i,ZERO>>
jabs «<ZERO,j > = «<j,ZERO>>

11I Define relations on integers

ilesseq «<i,j > «<ki = nlesseq (nplus i 1) (nplus ,j k)

iter ZERO f s =s
iter (SUCC n) f s = iter n f (f s)

PROVE
x=(SUCC x)'='(!x)'

PROVE
' nplus ZERO n' = ent

PROVE
' nplus (SUCO n) m' - 'SUOC (nplus nm)

PROVE
'nplus m n' = 'nplus n m

PROVE
' nplus (nplus 1 mn) n' = 'nplus 1 (nplus m nt

PROVE
'ndiff n ZERO' - n

PROVE
'ndiff (SUCC n) (SUCC in)' 'ndiff n m

PROVE
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'ndiff ni n' ='ZERO' , '!n'='true'

PROVE
'ndiff (ndiff 1 mn) n' ='ndiff 1 (nPlus min )'

PROVE
'niess n ZERO' = -n

PROVE
'niess (SUCC n) (SUCC mn)' = 'niess n mn'

PROVE

'niess n (SUCO mn)' = 'true',
('nim'='true' V/ 'niess n in'='true')

PROVE
'niess (SUCC n) mn' = 'true',

('nIess n 1i='true' & 'nless I m'='true')
PROVE
'niess ZERO (SUCC in) '=' true'

PROVE
'niess n ZERO' = 'false','!n' = 'true'

PROVE
'niess (SUOC n) (SUCC mn) (=( niess n in'

PROVE
'ndiv mn ZERO '=' botton'

PROVE
'iadiv in n '=' (nlesseq (SUCC in) n)->ZERO;

SUCC (ndiv (ndiff m n ) n)'

PROVE
'nniult ZERO n '=( (!n)->ZERO;botton'

PROVE
'ninult (SUCC in) n '=' nplus (ninult mn n) n'
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Appendix I

Gosper's Algorithm Code

This appendix contains C programs carrying out Gosper's algorithm to com-
pute combinations of the number 1 + -/F = [2,2,2,...] with itself, and an
example showing how subroutines of these programs can be rewritten to make
the programs compute combinations of other continued fractions. The first
program computes standard continued fractions and uses a decision cube
for deciding whether it is possible to determine and output the next par
tial quotient of the result, as proposed by Matula and Kornerup in [KMS8].
The second program computes generalized continued fractions and use., a
cruder algorithm to decide whether it can produce output. These programs
and their outputs are discussed in Subsection 6.4.2. Both programs use lEFE
double-precision floating-point arithmetic as implemented on a Sun 3/60 hav-
ing an MC68881 coprocessor with mask A93N. They both clear and te-st the
inexact status flag by calling fpstatus_ under Release 3.5 of the Sun UNIX
4.2 operating system.

1.1 Standard Continued Fractions

#include <stdio.h>

double a,b,c,d,e,fg,h,A,B,C,D,E,F,GH;
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main C
f
unsigned oldstatus ,newstatus,fpstatus..O;
double t,ta,tb,tc,td,te,tf~tgth;
double xC),yo),flooro;
double vx,vy.,vz,p,q.,pml,qml,pm2,qm2,rx) ,ry(),rz();

nevstatus = 0; /* for clearing program status flags *

(void) fprintf(stderr, "initialize coefficient cube: n");
(void) fprintf(stderr,"a:')
(void) scanf("%lf".&a);
(void) fprintf(stderr,"b:")
(void) scanf("%lfl",&b);
(void) fprintf(stderr,"c: )

(void) scanf ("%lf ",&c);
(void) fprinxtf(stderr,"d:")
(void) scanf("%lf",&d);
(void) fprintf(stderr,"e:")
(void) scanf("%lf" ,&e);
(void) fprintf(stderr,"f: I)

(void) scanf("Ylf",&f);
(void) fprintf(stderr,"g:")
(void) scanf("%lf",&g);
(void) fprintf(stderr,"h:")
(void) scanf("%lf" a&h);

vx = rxO; /* prepare values for descriptive output *
vy = rYO;
vz = rz(vx,vy);

A =a; /* initialize decision values *
B a + b

C a + C

D =a + b + c + d;
E e;

F e + f
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G -e +
H e + f+ g + h;

pm2 0 0; /* initialize convergents ,/
qm2 = 1;
piu1 = 1;
qml = 0;

while(l) {
if(H == 0 II F == 0 II

floor(B/F) != floor(D/H)) { 1* must ingest an x *1

t = x(;

oldstatus = fpstatus_(&newstatus); /* clear flags */

ta a; /* update coefficient values *1
tb b;
tc c;
td d;
te e;
t f;
tg g;

th h;

a - t*ta + tc;
b - t*tb + td;
c ta;

d - tb;
e - t*te + tg;
f = t*tf + th;
g = te;
h = tf;

ta - A; /* update decision values */
tb a B;
tc - C;
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td = D;
te - E;

tf - F;
tg = G;

th = H;

C = t*ta + tc;

D = t*tb + td;
A = C - ta;
B = D - tb;

G - t*te + tg;
H = t*tf + th;

E =G - te;

F = H - tf;

oldstatus = fpstatus_(&newstatus); /* test flags */
if(oldstatus & 512) {

(void) printf("\n\
Inexact update ingesting x partial quotient %.1.0f\n",

t);
exit ();
}

(void) printf ("\
Ingested the x partial quotient %1.Of\n",t);

}
else {

if(G =- 0 II =--0 II
floor(C/G) floor(D/H) II
floor(A/E) ! floor(B/F)) { /* must ingest a y */

t = yO;

oldstatus = fpstatus_(&nevstatus);

ta = a; /* update coefficient values */
tb = b;

tc = c;
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td = d;

te = e;
tf =f;

tg =g;

th h;

a = t*ta + tb;
b = ta;
c = t*tc + td;

d = tc;
e = t*te + tf;
f = te;

g = t*tg + th;
h = tg;

ta = A; /* update decision values */
tb = B;

tc = C;

td = D;

te = E;

tf = F;

tg = G;

th = H;

B = t*ta + tb;
A - B - ta;
D = t*tc + td;

C - D - tc;

F - t*te + tf;
E = F - te;
H t*tg + th;
G - H - tg;

oldstatus a fpstatus_(&newstatus);
if(oldstatus & 512) {

(void) printf ("\n\

Inexact update ingesting y partial quotient %1.Of\n",
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exit (1);

(void) printf("\

Ingested the y partial quotient %1.Of\n",t);
}

else { /* can output a partial quotient */
t = floor(A/E);

oldstatus = fpstatus_(&newstatus);

ta = a; /* update coefficient values */
tb = b;

tc = C;
td = d;
te = e;
tf = f;
tg = g;

th = h;

a = te;
b = tf;
c = tg;

d = th;
e = ta - t*te;

f - tb - t*tf;

g = tc - t*tg;

h = td - t*th;

ta = A; /* update decision values */
tb = B;
tc = C;

td = D;
te = E;
tf = F;

tg = G;
th - H;
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A - to;
B - tf;
C - tg;
D - th;
E - ta - t*te;
F = tb - t*tf ;

G = tc - t*tg;

H - td - t*th;

oldstatus - ipstatus-(&newstatus);
if(oldstatus & 512) f

(void) printf ("\n\
Inexact update outputting partial quotient X1.Of\n".

exit(1);

(void) printf C"\n\
Output the partial quotient %1.Of\n\n",

(void) printf("\
Coefficient cube after output:\n\n\
a -- -20.Of e -- %-20.Of\n\

b -- -20.Of f -- -20.0f\n\

c -- -20.Of g -- %-20.Of\n\
d -- -20.Of h -- -20.Of\n\n",

a,e,b,f,c~g,d,h);

p - t*pml + p.2; /* update convergents *
q - t*qial + q.2;
p.2 - pal;
qz2 - qal;

pal - P

qul - q
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(void) printfQ(\

New approximation: %20.16e\n\

True result: %20.16e\n\n",

p/q,vz);
}

}
}

double rz(u,v) /* Written to evaluate correctly with */

double u,v; /* POSINF as one or both arguments */

{
return((a + b/v + c/u + d/(u*v))/(e + f/v + g/u + h/(u*v)));
}

/* Code for inputs */

double x()
{
return(2);
}

double rxO

{
double sqrtO;

return(1.0 + sqrt(2.0));
I

double y()
{
return(2);
}
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double ry()

double sqrtO;

return(1.0 + sqrt(2.0));

1.2 Generalized Continued Fractions

*include <stdio .h>

unsigned oldstatus,nestatus,fpstatus-..;

double a,b,c,de,f,g,h;
double p,q,pml,qml,pm2,qm2;
double min,max ,deltax,deltay;

double POSINF,value(3);

main C

void ingestxO ,ingestyo),outputzo ,getlimso;
double vx,vy,vz,rxo),ry() rzO;

newstatus =0; /* for clearing program status flags *

vi 0.0; /* for finding limit values *
POSINF - /x
value[0] - -1.0;
valuefi) = 1.0;
value[2J - POSINF;

(void) fprintf(stderr "initialize coefficient cube:\n");
(void) fprintf(stderr,"a: 11);
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(void) scanf ("%if ",&a);
(void) fprintf(stderr,11b: "1);
(void) scanf("%lf",ab);
(void) fprintf(stderr,"c: '9);
(void) -scanf ("%lf ",&c);
(void) fprintf(stderr,11d: 1I);
(void) scanf ("%ilf"1,M);
(void) fprintf(stderr,"e:';
(void) scanf("%lf",&e);
(void) fprintf(stderr,11f: "1);
(void) scanf("Y1f" ,&);
(void) fprintf(stderr,1g: '9);
(void) scanf("%lf"I,&g);
(void) fprintf(stderr,"1h: "1);
(void) scanf("%lf",Ah);

vx = rxO; /* prepare values for descriptive output *
vy = ryO;
vz = rz(vx,vy);

pm2 -0; /* initialize convergents *
qm2 a 1;
pml a 1;
qml = 0;

ingestxo;
ingestyo;

while(1) (
getlimsO;
if(max - mi < 0.5){

outputzO;

(void) printf("\
Coefficient cube after output:\n\n\
a -- %-20.Of e -- %-20.0f\u\
b -- -20.Of f -- %-20.0f\n\
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c - X-20.Of g -- Y-20.Of\n\
d -- -20.Of h -- %-2O.Of\n\nn,

apesbofocigodsh);
(void) printf('\

Nov approximation: X20.16e\n\
True result: 2.6nn,

p/q,vz);
I

else{
if(deltax >- deltay)

ingestx();
else

ingestyo;

I

void ingestx()

double tlta&Itbitc,td,te,tf,tg,th;
double x();

t - rO;

oldstatus = fpstatus-(knewstatus); /* clear flags *

ta -a; /* update coefficient values *
tb - b
tc - c;
td - d

tf -f

th - h

a -t*ta + tc;
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b - t*tb + td;
c - ta;
d - tb;
e - t*te + tg;
f - t*tf + th;
g - to;
h = tf ;

oldstatus -fpstatus.(&newstatus); /* test flags *
if(oldstatus A 512) f

(void) printf ("\n\
Inexact update ingesting x partial quotient %1.Of\n",

exit(1);

(void) printf("\
Ingested the x partial quotient %1.Of\n",t);

I

void ingestyO)

f
double t,ta,tbtc,td,te,tftg,th;
double yo;

t - YO;

oldstatus =fpstatus..(&newstatus);

ta - a; /* update coefficient values *
tb - b;
tc - C;

td - d

to - e;
tf = f

tg - g
th - h
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a a t*ta + tb;
b -ta;
c =t*tc + td;
d = tc;
e = t*te + tf;
f = te;
g =t*tg + th;
h =tg;

oldstatus =fpstatus-.(uewstatus);
if(oldstatus & 512) f

(void) printf ("\n\
Inexact update ingesting y partial quotient %1.Of\n",

(void) printf("\
Ingested the y partial quotient '.I.iOfn",t);

I

void outputz()

double t,ta,tb,tc,td,te,tf,tg~th;
double ceil) )flooro;

t (min4'max)/2.O;
ta floor(t);
tb ceil(t);

t *ta;
else

t tb;

oldstatus fpstatus-.(&nevstatus);
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ta - a; 1* update coefficient values *
tb - b

tc - C

td = d
te = e
tf = f

tg - g
th = h

a - te;
b - tf;
c - tg;
d = th;
e = ta - t*te;
f = tb - t*tf;

g = tc - t*tg;

h = td - t*th;

oldstatus = fpstatus-.(&uestatus);
if(oldstatus & 512) f

(void) printf ("\n\
Inexact update outputting partial quotient %1.Of\n",

exit(1);

(void) printf('\n\
Output the partial quotient %1.Of\n\n",

p a t*pml + pm2; /* update convergents *
q - t*qml + qm2;
pm2 = pml;
qm2 = qml;

pml = q
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void getlimso

int i,j;
double temp,limits[3J [3) ,minx,maxx,miny,maxy,rzo;

min = POSINF;
max = -POSINF;
for(i=0; i<3; ++i){

for(j-0; j<3; ++j){
temp = rz(value[iJ,value[j]);
limits [iJ (jJ = temp;
if (temp < min)

min temp;
if (temp > max)

max = temp;

deltax =0.0;
for(j=0; j<3; ++j){

minx - POSINF;
maxx - -POSINF;
for(i-0; i<3; ++i){

temp - limits [iJ (j]
if (temp < minx)

minx - temp;
if (temp > maxx)

maxx temp;

I
temp - mm - minx;
if (temp > deltax)

deltax =temp;

I

deltay -0.0;
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for(i-O; i<3; ++i) {
miny - POSINF;
maxy - -POSINF;
for(j=O; j<3; ++j) {

temp - limits(i] [j];
if(temp < miny)

miny = temp;
if (temp > maxy)

maxy = temp;
}

temp = maxy - miny;
if(temp > deltay)

deltay = temp;
}

double rz(u,v) /* Written to evaluate correctly with */
double u,v; /* 4- POSINF as one or both arguments */
{
return((a + b/v + c/u + d/(u*v))/(e + f/v + g/u + h/(u*v)));}

/* Code for inputs */

double x()

return (2);
}

double rx()
{
double sqrto;

return(1.O + sqrt(2.0));

}
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double y()
{
return(2);
}

double ryO
{
double sqrtO;

return(1.0 + sqrt(2.0));
I

1.3 Sample Modifications

double x()
{
static int index = 0;

double q;

if(index -= 0)
q - 2.0;

else if(index 1)
q = 1.0;

else {
if((index-2)%3 == 0)

q - 2.0*(1.0 + (((double) index) - 2.0)/3.0);

else
q 1.0;

I
++index;
return(q);

1
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double rno

double expo;,

retun(ep(1 .0));
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ATTN: John W. Preusse
Ft Monmouth NJ 07703

Gemini Comouters Inc.

ATTN: Roger ScheLtl
63 Garden Court (Suite 110)
Monterey CA 93940

aoeing Aerospace Co
ATTN: Daniel Schnackenberl (RH-35)
3.3. 9ox 3999

Seattle WA 98124
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39N Laboratoriesp Inc.
ATTN: Steve Vinter

1) Moulton Street
Cambridge MA 02238

University of California
Computer Science Dept
ATTN: Prof Richard A. Kemmerer
Santa Barbara CA 93106

Institute for Defense Analyses
Computer & Software Engineering Div
ATTN: William MayfieLd
1801 N. Beauregard St
Alexandria VA 22311

Unisys Corp
ATTN: Deborah Cooper (4S 91-11)

2525 Colorado Ave

Santa Monica CA 90406-9988

Trusted Informations Systems
ATTN: Steohen T. Walker

3060 Washington Rd
Glenwood MD 21738

SRI InternationaL
Computer Science Lab
ATTN: John Rushby
333 Ravenswood Ave
MenLo Park CA 94025

NASA Langley Research Center
ATTN: Ricky Butler (MS 130)

Hampton VA 23665-5225

NationaL Computer Security Center

ATTN: Rob Johnson/C33
9300 S3vage Rd
Ft Meade MD 20755-6000

4ationiL Computer Security Center
ATTN: Howard StainerlC3

900 Savage Rd
FT Meale 4D 20755-6000

SPAWAP/Code 3242
ATTN: Boo Kolacki
wash OC 23363-5100
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Strategic Defense Initiative Office
Office of the Secretary of Defense
dash DC 23301-7100

National Security Agency

ATTN: George Hoover/V45
9800 Savage Rd
Ft Meade MD 20755-6000

NavaL Research Laboratory
ATTN; John McLean (Coae 5540)
Wash DC 20375

DARPAIISTO
ATTN: (Dr. WiLLiam ScherLis)IDL-10
1430 Witson Btvd
ArLington VA 22209-2308
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AMISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
' selected acquisition programs in support of Command, Control,

Communications and Intelligence (CV1) activities. Technical and
engineering support within areas of competence is provided to

. ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. The areas of

'Z technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, elect romagnetics, and propagation, and electronic
reliability/maintainability and compatibility.


